精英家教网 > 高中数学 > 题目详情
11.设函数f(x)=$\left\{\begin{array}{l}{{3}^{-x},x∈(-∞,1)}\\{lo{g}_{27}x,x∈[1,+∞)}\end{array}\right.$,则满足f(x)=$\frac{1}{3}$的x的值是3.

分析 由函数f(x)=$\left\{\begin{array}{l}{{3}^{-x},x∈(-∞,1)}\\{lo{g}_{27}x,x∈[1,+∞)}\end{array}\right.$,分类求出满足f(x)=$\frac{1}{3}$的x的值,综合讨论结果,可得答案.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{3}^{-x},x∈(-∞,1)}\\{lo{g}_{27}x,x∈[1,+∞)}\end{array}\right.$,
当x<1时,解f(x)=3-x=$\frac{1}{3}$得:x=1(舍去);
当x≥1时,解f(x)=log27x=$\frac{1}{3}$得:x=3,
综上所述,x=3,
故答案为:3

点评 本题考查的知识点是分段函数的应用,已知函数值,求自变量,就是解方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.对于两随机事件A,B若P(A∪B)=P(A)+P(B)=1,则事件A,B的关系是(  )
A.互斥且对立B.互斥不对立
C.既不互斥也不对立D.以上均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=2-kt}\\{y=t}\end{array}\right.$(t为参数),以O为极点,Ox为极轴的极坐标系中,曲线C的极坐标方程为ρcos2θ=sinθ.
(1)写出直线l和曲线C的普通方程:
(2)若直线l和曲线C有两个不同的交点,求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数y=2-x+m的图象不经过第一象限,则m的取值范围是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,点(n,2Sn)(n∈N+)均在函数y=x2+x的图象上
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(2cos2x,1),$\overrightarrow{b}$=(2cos(2x-$\frac{π}{3}$),-1).令f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的最小正周期及单调增区间.
(2)若f($\frac{1}{4}$θ)=$\frac{2}{3}$,且θ∈($\frac{π}{6}$,$\frac{5π}{6}$),求cosθ的值.
(2)当x∈[$\frac{π}{4}$,$\frac{π}{2}$]时,求f(x)的最小值以及取得最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.点P(x0,8)在抛物线y2=-32x上,F为抛物线的焦点,则PF=10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\left\{\begin{array}{l}{1,x为有理数}\\{π,x为无理数}\end{array}\right.$,下列结论不正确的(  )
A.此函数为偶函数B.此函数的定义域是R
C.此函数既有最大值也有最小值D.方程f(x)=-x无解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知:数列{an},{bn}满足$\left\{\begin{array}{l}{{a}_{n}=2{a}_{n-1}+{b}_{n-1}}\\{{b}_{n}=3{a}_{n-1}+4{b}_{n-1}}\end{array}\right.$(n≥2)且a1=2,b1=3,求an,bn的通项公式.

查看答案和解析>>

同步练习册答案