精英家教网 > 高中数学 > 题目详情

【题目】重庆市的新高考模式为,其中“3”是指语文、数学、外语三门必步科目:“1”是指物理、历史两门科目必选且只选一门;“2”是指在政治、地理、化学、生物四科中必须任选两门,这样学生的选科就可以分为两类:物理类与历史类,比如物理类有:物理+化学+生物,物理+化学+地理,物理+化学+政治.物理+政治+地理,物理+政治+生物,物理+生物+地理.重庆某中学高一学生共1200人,其中男生650人,女生550人,为了适应新高考,该校高一的学生在3月份进行了的选科,选科情况部分数据如下表所示:(单位:人)

性别

物理类

历史类

合计

男生

590

女生

240

合计

900

1)请将题中表格补充完整,并判断能否有99%把握认为是否选择物理类与性别有关

2)已知高一9班和10班选科结果都只有四种组合:物理+化学+生物,物理+化学+地理,政治+历史+地理,政治+历史+生物.现用数字1234依次代表这四种组合,两个班的选科数据如下表所示(单位:人).

理化生

理化地

政史地

政史生

班级总人数

9

18

18

12

12

60

10

24

12

18

6

60

现分别从两个班各选一人,记他们的选科结果分别为,令,用频率代表概率,求随机变量的分布列和期望.(参考数据:

附:

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

【答案】(1)表格见解析,有99%把握认为是否选择物理类与性别有关;(2)分布列见解析,

【解析】

1)根据总人数和表格中已有数据,填写完成表格,计算出,结合表格中的已知数据,做出判断;(2)先的取值分别为0123,再计算出每种取值的概率,列出分布列,计算出期望.

1)根据物理类总人数900人,其中男生590人,可得女生为310人,

根据总人数1200人,得到历史类总人数300人,其中女生240人,可得男生60人.

完成表格如下:

性别

物理类

历史类

合计

男生

590

60

650

女生

310

240

550

合计

900

300

1200

所以

所以,有99%把握认为是否选择物理类与性别有关“.

2的取值分别为0123

的分布列为:

0

1

2

3

0.26

0.39

0.24

0.11

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出曲线的直角坐标方程,并求时直线的普通方程;

2)直线和曲线交于两点,点的直角坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.

1)经过1轮投球,记甲的得分为,求的分布列;

2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.

①求

②规定,经过计算机计算可估计得,请根据①中的值分别写出ac关于b的表达式,并由此求出数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调区间;

(2)若存在两个不相等的正数,,满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线经过点,过点的直线与抛物线有两个不同的交点,且直线轴于点,直线轴于点

1)求直线的斜率的取值范围;

2)设为原点,,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级有男生人,编号为;女生人,编号为.为了解学生的学习状态,按编号采用系统抽样的方法从这名学生中抽取人进行问卷调查,第一组抽到的号码为,现从这名学生中随机抽取人进行座谈,则这人中既有男生又有女生的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在等腰梯形中,中点.为折痕将折起,使点到达点的位置,如图(2.

1)求证:

2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为椭圆的左、右焦点,为该椭圆的一条垂直于轴的动弦,直线轴交于点,直线与直线的交点为.

1)证明:点恒在椭圆.

2)设直线与椭圆只有一个公共点,直线与直线相交于点,在平面内是否存在定点,使得恒成立?若存在,求出该点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案