如图,在四棱锥中,底面是菱形,,,,平面,是的中点,是的中点.
(Ⅰ) 求证:∥平面;
(Ⅱ)求证:平面⊥平面;
(Ⅲ)求平面与平面所成的锐二面角的大小.
(Ⅰ) 取中点为,连 ∵ 是的中点 ∴是的中位线,∴ ∵ 是中点且是菱形,
,∴ . ∴
∴ 四边形是平行四边形. 从而 , ∵ 平面 ,
平面, ∴ ∥平面 ……………………………4分
(Ⅱ)∵ ⊥平面,平面 ∴
∵ 底面是菱形, ∴ 为正三角形, ∵是中点 ∴ ∵是平面内的两条相交直线 ∴ ⊥平面.
∵平面 ∴ 平面⊥平面 . ……………………………8分
说明:(Ⅰ) 、(Ⅱ)前两小题用向量法,解答只要言之有理均应按步给分.
(Ⅲ)以为原点,垂直于的方向为轴,的方向分别为轴、轴建立空间直角坐标系,易知、、、.
由(Ⅱ)知⊥平面,∴是平面的一个法向量,
设平面的一个法向量为
由 ,且由
在以上二式中令,则得,,
∴,设平面与平面所成锐角为
∴ .
故平面与平面所成的锐角为
【解析】略
科目:高中数学 来源:2010-2011年广西省桂林中学高二下学期期中考试数学 题型:解答题
((本小题满分12分)
如图,在四棱锥中,底面是矩形.已知
.
(1)证明平面;
(2)求异面直线与所成的角的大小;
(3)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源:2013届上海市高二年级期终考试数学 题型:解答题
(本题满分16分)
如图,在四棱锥中,底面是矩形.已知.
(1)证明平面;
(2)求异面直线与所成的角的大小;
(3)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源:2010年江苏省高二下学期期末考试附加卷数学卷 题型:解答题
如图,在四棱锥中,底面是正方形,侧棱,为中点,作交于
(1)求PF:FB的值
(2)求平面与平面所成的锐二面角的正弦值。
查看答案和解析>>
科目:高中数学 来源:2011届浙江省高三6月考前冲刺卷数学理 题型:解答题
(本小题满分14分)
如图,在四棱锥中,底面为平行四边形,平面,在棱上.
(Ⅰ)当时,求证平面
(Ⅱ)当二面角的大小为时,求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com