精英家教网 > 高中数学 > 题目详情
6.已知两定点A(-2,1),B(1,3),动点P在直线x-y+1=0上,当|PA|+|PB|取最小值时,这个最小值为(  )
A.$\sqrt{5}$B.3C.$\sqrt{13}$D.$\sqrt{17}$

分析 设点A(-2,1)关于直线x-y+1=0的对称点A′(m,n).利用轴对称的性质可得A′的坐标.连接A′B与直线相交于点P,则|PA|+|PB|的最小值为|A′B|.利用两点间的距离公式即可得出|PA|+|PB|的最小值.

解答 解:设点A(-2,1)关于直线x-y+1=0的对称点A′(m,n).
则$\left\{\begin{array}{l}{\frac{-2+m}{2}-\frac{1+n}{2}+1=0}\\{\frac{n-1}{m+2}=-1}\end{array}\right.$,
解得m=0,n=-1,
连接A′B与直线相交于点P,则|PA|+|PB|的最小值为|A′B|=$\sqrt{(1-0)^{2}+(3+1)^{2}}$=$\sqrt{17}$.
故选:D.

点评 本题考查了最小值问题转化为轴对称问题,考查了相互垂直的直线斜率之间的关系和中点坐标公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设抛物线C:y2=4x,过定点(m,0)的直线l与抛物线C交于A、B两点,连结A及抛物线顶点O的直线与准线交于点B′,直线BO与准线交于点A′,且AA′与BB′均平行于x轴.
(1)求m的值;
(2)求四边形ABB′A′面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AB∥CD,AD=DC=CB=1,∠ABC=$\frac{π}{3}$,对角面A1ACC1为矩形,平面A1ACC1⊥平面ABCD,CC1=1.
(1)证明:BC⊥平面A1ACC1
(2)点M在线段A1C1上运动,当M点在什么位置时,几何体B1-AMB的体积为$\frac{\sqrt{3}}{12}$?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.有下列4个命题:
①两个平面垂直,过一个平面内任意一点作交线的垂线,则此直线必垂直于另一平面;
②平面α内两条不平行的直线都平行于另一平面β,则α∥β; 
③两条直线和一个平面所成的角相等,则这两条直线平行;
④直线a不平行于平面α,则平面α内不存在与直线a平行的直线.
其中正确命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD的底面为直角梯形,且∠BAD=∠ADC=90°,E,F,G分别为PA,PB,PC的中点,直线PB⊥平面EFG,AB=$\frac{1}{3}$DC=$\frac{1}{3}AD$=1.
(1)若点M∈平面EFG,且与点E不重合,判断直线EM与平面ABCD的关系,并说明理由;
(2)若PB=4,求四棱锥C-ABFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左,右焦点为F1,F2.A,B为顶点,以线段F1F2为直径的圆交双曲线的一条渐近线bx-ay=0于M,N两点,且∠MAB=30°,则双曲线的离心率为(  )
A.$\frac{{\sqrt{21}}}{3}$B.2C.$\frac{{\sqrt{6}}}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在圆O中,AB,CD是互相平行的两条弦,直线AE与圆O相切于点A,且与CD的延长线交于点E,求证:AD2=AB•ED.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴是短轴的两倍,点P($\sqrt{3}$,$\frac{1}{2}$)在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为k1、k、k2,且k1、k、k2恰好构成等比数列.
(Ⅰ)求椭圆C的方程.
(Ⅱ)试探究|OA|2+|OB|2是否为定值?若是,求出这个值;否则求出它的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)的定义在(0,+∞)的函数,对任意两个不相等的正数x1,x2,都有$\frac{{x}_{2}f({x}_{1})-{x}_{1}f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,记a=$\frac{f({3}^{0.2})}{{3}^{0.2}}$,b=$\frac{f({0.3}^{2})}{{0.3}^{2}}$,c=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,则(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

同步练习册答案