精英家教网 > 高中数学 > 题目详情
如图,在几何体中,四边形ABCD为平行四边形,且∠ACB=90°,平面ACE⊥平面ABCD,EF∥BC,AC=BC=2,AE=EC=
2

(Ⅰ)求证:平面ACE⊥平面BCEF;
(Ⅱ)求三棱锥D-ACE的体积.
分析:(I)由平面AC2=AE2+CE2平面,知AE⊥EC,由此能够证明BC⊥AE,进而由线面平行的判定定理及面面垂直的判定定理,可得平面ACE⊥平面BCEF;
(II)设AC的中点为G,连接EG,由AE=CE,知EG⊥AC,由BC⊥平面AEC,知EG⊥BC,由此推导出点F到平面ABCD的距离就等于点E到平面ABCD的距离,由此能求出三棱锥D-ACF的体积.
解答:证明:(I)∵平面AC2=AE2+CE2平面,
∴AE⊥EC,且平面ACE∩平面,AE⊥ECBF,BC⊥AC,
BC?平面BCEF,∴BC⊥平面AEC.…(2分)
∴BC⊥AE,…(3分)
又AC=
2
,AE=EC=1,∴AC2=AE2+CE2
∴AE⊥EC…(4分)
且BC∩EC=C,∴AE⊥平面ECBF.…(6分)
解:(II)设AC的中点为G,连接EG,
∵AE=CE,
∴EG⊥AC
由(I)知BC⊥平面AEC,
∴BC⊥EG,即EG⊥BC,
又AC∩BC=C,
∴EG⊥平面ABCD…(8分)
EF∥BC,EF?平面ABCD,
所以点F到平面ABCD的距离就等于点E到平面ABCD的距离
即点F到平面ABCD的距离为EG的长…(10分)
∴三棱锥D-ACE的体积VD=
1
3
S△ACD•EG,
∵S△ACD=
1
2
AC•AD=
1
2
×
2
×
2
=1
EG=
1
2
AC=
2
2

∴V=
1
3
×1×
2
2
=
2
6

即三棱锥D-ACF的体积为
2
6
.…(12分)
点评:本题考查直线与平面垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且(单位:cm),E为PA的中点.
(1)如图,若主视方向与AD平行,请作出该几何体的主视图并求出主视图面积;
(2)证明:DE∥平面PBC;
(3)证明:DE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正四棱柱ABCD-A1B1C1D1中,AA1=
12
AB,点E、M分别为A1B、C1C的中点,过点A1、B、M三点的平面A1BMN交C1D1于点N.
(1)求证:EM∥平面A1B1C1D1
(2)求二面角B-A1N-B1的正切值;
(3)设截面A1BMN把该正四棱柱截成的两个几何体的体积分别为V1、V2(V1<V2),求V1:V2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)如图是一几何体的平面展开图,其中ABCD为正方形,E、F分别为PA、PD的中点.在此几何体中,给出下面四个结论:
①直线BE与直线CF异面;
②直线BE与直线AF异面;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正确的命题的个数是
2
2
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E为PA的中点.
(1)如图,若正视方向与AD平行,请在下面(答题区)方框内作出该几何体的正视图并求出正视图面积;
(2)证明:DE∥平面PBC;
(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=4,DC=3,E是PC的中点.
(I)证明:PA∥平面BDE;
(II)求△PAD以PA为轴旋转所围成的几何体体积.

查看答案和解析>>

同步练习册答案