精英家教网 > 高中数学 > 题目详情
已知平面α∥平面β,直线m?平面α,那么直线m与平面β 的关系是(  )
A、直线m在平面β内
B、直线m与平面β相交但不垂直
C、直线m与平面β垂直
D、直线m与平面β平行
考点:直线与平面平行的判定
专题:空间位置关系与距离
分析:根据线面平行的性质得到直线m与平面β没有公共点,由线面平行的定义可得.
解答: 解;因为平面α∥平面β,直线m?平面α,
所以直线m与平面β没有公共点,
所以直线m∥平面β;
故选D.
点评:本题考查了面面平行的性质以及线面平行的判定,运用了线面平行的定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,A,B,C,D是圆O上的四个点,DE为圆O的切线,AC∥DE,直线AC与BD交于点F,若AB=2,AD=3,BD=4,则CF=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1的参数方程为
x=-2+
10
cosθ
y=
10
sinθ
为参数),曲线C2的极坐标方程为ρ=2cosθ+6sinθ,问曲线C1,C2是否相交,若相交请求出公共弦的方程,若不相交,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(2x,-3),若
a
b
共线,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,an>0,Sn为其前n项和,2Sn=4an-1.
(1)求数列{an}的通项公式;
(2)数列{bn}满足对任意n∈N*,都有b1an+b2an-1+…+bna1=2n-
1
2
n-1,求数列{bn}的第5项b5

查看答案和解析>>

科目:高中数学 来源: 题型:

一所中学共有4000名学生,为了引导学生树立正确的消费观,需抽样调查学生每天使用零花钱的数量(取整数元)情况,分层抽取容量为300的样本,作出频率分布直方图如图所示,请估计在全校所有学生中,一天使用零花钱在6元~14元的学生大约有
 
人.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1与曲线
x2
3a2
+
y2
b2
=1(a>0,b>0)的交点恰为某正方形的四个顶点,则双曲线的离心率为(  )
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于正项数列{an},若
an+1
an
≥q
对一切n∈N*恒成立,则ana1qn-1对n∈N*也恒成立是真命题.
(1)若a1=1,an>0,且
an+1
an
≥3c(c≠
1
3
,c≠1)
,求证:数列{an}前n项和Sn
1-(3c)n
1-3c

(2)若x1=4,xn=
2xn-1+3
(n≥2,n∈N*)
,求证:3-(
2
3
)n-1xn≤3+(
2
3
)n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

一个质地均匀的正四面体的四个面上分别标示着数字1、2、3、4,一个质地均匀的正八面体的八个面上分别标示着数字1、2、3、4、5、6、7、8,先后抛掷一次正四面体和正八面体.
(Ⅰ)用数对(x,y)标示正四面体上和八面上被压住的两个数字,请列举出全部基本事件;
(Ⅱ)求正四面体上被压住的数字不小于正八面体上被压住的数字的概率;
(Ⅲ)求两个几何体上被压在底部的两个数字之和不超过6的概率.

查看答案和解析>>

同步练习册答案