精英家教网 > 高中数学 > 题目详情
17.cos120°+tan225°=$\frac{1}{2}$.

分析 直接利用三角函数的诱导公式化简求值.

解答 解:cos120°+tan225°=cos(180°-60°)+tan(180°+45°)
=-cos60°+tan45°=-$\frac{1}{2}+1$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查利用诱导公式求三角函数的值,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.对于复数a,b,c,d,若集合S={a,b,c,d}具有性质“对任意x,y∈S,必有xy∈S”,则当$\left\{\begin{array}{l}{a^2}=1\\ b=1\\{c^2}=a\end{array}\right.$时,b+c+d等于(  )
A.1B.-1C.0D.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某程序的框图如图所示,输入N=5,则输出的数等于(  )
A.$\frac{5}{4}$B.$\frac{5}{6}$C.$\frac{6}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图的程序是用来计算(  )
A.3×10的值B.1×2×3×…×10的值C.39的值D.310的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:定义在(0,+∞)上的函数f(x)满足f(2)=1,且对任意x,y∈(0,+∞),均有f(x•y)=f(x)+f(y),现有数列{an}满足$\frac{{a}_{n+1}}{{a}_{n}}$=2n,a1=1,且bn=f(an).
(1)求f(4)及f(2n),(n∈N+)的值;
(2)求{an},{bn}的通项公式;
(3)令cn=$\frac{1}{{b}_{n+1}}$,并记{cn}前n项和为Sn,问:是否存在实数k,使得Sn<k(n+4),对一切n∈N+恒成立,若存在求出k值,不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足$\left\{{\begin{array}{l}{x+y≥2}\\{x-y≤2}\\{0≤y≤3}\end{array}}\right.$,则z=x-2y的取值范围是[-7,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设偶函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,$\overrightarrow{MK}•\overrightarrow{ML}$=0,|KL|=1,|ML|=$\frac{{\sqrt{2}}}{2}$,则$f(\frac{1}{6})$的值为(  )
A.$-\frac{{\sqrt{3}}}{4}$B.$-\frac{1}{4}$C.$-\frac{1}{2}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不等式-x2+2x+3<0的解集是{x|x<-1或x>3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=2$\sqrt{3}$sin2(ωx+$\frac{π}{4}$)+2cos2ωx(ω>0)在区间[α,β]上既有最大值也有最小值,且β-α的最小值为$\frac{π}{2}$.
(1)求函数f(x)的单调递减区间;
(2)若△ABC的面积为$\frac{{\sqrt{3}}}{2}$,a,b,c分别是角A,B,C的对边,且f(C)=3+$\sqrt{3}$,c=1,试求△ABC的内切圆的半径.

查看答案和解析>>

同步练习册答案