精英家教网 > 高中数学 > 题目详情
已知在△ABC中,∠A=120°,记
α
=
BA
|
BA
|cosA
+
BC
|
BC
|cosC
β
=
CA
|CA|
cosA
+
CB
|
CB
|sinB
CB
|
CB
|cosB
,则向量
α
β
的夹角为______.
根据题意,
α
CA
=|
CA
|-|
CA
|=0,即向量
α
CA
垂直,
同理:
β
BA
=0,即向量
β
BA
垂直,
而向量
CA
BA
的夹角即A为60°,
则向量
α
β
的夹角为60°或120°;
故答案为60°或120°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知向量
a
b
的夹角为60°,且|
a
|=2,|
b
|=1,若
c
=
a
-4
b
d
=
a
+2
b
,求
(1)
a
b

(2)|
c
+
d
|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两空间向量
a
=(2,cosθ,sinθ),
b
=(sinθ,2,cosθ),则
a
+
b
a
-
b
的夹角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在平面直角坐标系xOy中,两个非零向量
OA
OB
与x轴正半轴的夹角分别为
π
6
3
,向量
OC
满足
OA
+
OB
+
OC
=
0
,则
OC
与x轴正半轴夹角取值范围是(  )
A.(0,
π
3
B.(
π
3
6
C.(
π
2
3
D.(
3
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知|
a
|=1,|
b
|=2,<
a
b
>=60°
,则|2
a
-
b
|
=(  )
A.2B.4C.2
2
D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

a
=(3,2)
b
=(1,-5)
,则
a
b
的夹角为______.(结果用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a∈R,函数m(x)=x2,n(x)=aln(x+2).
(Ⅰ)令f(x)=
m(x),x≤0
n(x),x>0
,若函数f(x)的图象上存在两点A、B满足OA⊥OB(O为坐标原点),且线段AB的中点在y轴上,求a的取值集合;
(Ⅱ)若函数g(x)=m(x)+n(x)存在两个极值点x1、x2,求g(x1)+g(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(Ⅰ)若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,求sin(α+β)的值;
(Ⅱ)若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知在平面直角坐标系满足条件
  则的最大值为                             (   )
A.1B.0C.3D.4

查看答案和解析>>

同步练习册答案