精英家教网 > 高中数学 > 题目详情
12.若三角形中有一个角为60°,夹这个角的两边的边长分别是6和2,则它的外接圆半径等于$\frac{2\sqrt{21}}{3}$.

分析 利用余弦定理与正弦定理即可得出.

解答 解:设三角形的外接圆半径为R.
设A=60°,由余弦定理可得:a2=62+22-2×6×2cos60°=28,解得a=2$\sqrt{7}$.
由正弦定理可得:2R=$\frac{2\sqrt{7}}{sin6{0}^{°}}$=$\frac{4\sqrt{21}}{3}$,
解得R=$\frac{2\sqrt{21}}{3}$.
故答案为:$\frac{2\sqrt{21}}{3}$.

点评 本题考查了余弦定理与正弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.函数f(x)=4x3+ax2+bx+5在(-∞,-1)和($\frac{3}{2}$,+∞)单调递增,在(-1,$\frac{3}{2}$)单调递减.
(1)求函数的解析式;
(2)求f(x)在[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设集合S={1,2,3,…,n}(n≥5,n∈N*),集合A={a1,a2,a3}满足a1<a2<a3且a3-a2≤2,A⊆S
(1)若n=6,求满足条件的集合A的个数;
(2)对任意的满足条件的n及A,求集合A的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知M(4,0),N(1,0),曲线C上的任意一点P满足:$\overrightarrow{MN}$•$\overrightarrow{MP}$=6|$\overrightarrow{PN}$|
(Ⅰ)求点P的轨迹方程;
(Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设$\overrightarrow{MN}$=λ1$\overrightarrow{AN}$,$\overrightarrow{HB}$=λ2$\overrightarrow{BN}$,试问λ12是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=2ln(3x)+8x,则$\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{△x}$的值为(  )
A.10B.-10C.-20D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知$cos(\frac{π}{6}-α)=\frac{{\sqrt{3}}}{2}$求$cos(\frac{5}{6}π+α)-{sin^2}(-α+\frac{7π}{6})$的值.
(2)若cosα=$\frac{2}{3}$,α是第四象限角,求$\frac{sin(α-2π)+sin(-α-3π)cos(α-3π)}{cos(π-α)-cos(-π-α)cos(α-4π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过圆x2+y2=4外一点M(4,-1)引圆的两条切线,则经过两切点的直线方程是(  )
A.4x-y-4=0B.4x+y-4=0C.4x+y+4=0D.4x-y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆的一般方程为x2+y2-2x+4y+3=0,则圆心C的坐标与半径分别是(  )
A.(1,-2),r=2B.(1,-2),$r=\sqrt{2}$C.(-1,2),r=2D.(-1,2),$r=\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)定义如表,数列{xn}满足x0=5,且对任意的自然数均有xn+1=f(xn),则x2011=(  )
x12345
f(x)41352
A.1B.2C.4D.5

查看答案和解析>>

同步练习册答案