精英家教网 > 高中数学 > 题目详情
若△ABC的周长等于20,面积是10
3
,A=60°,则a=
7
7
分析:根据三角形面积公式,结合A=60°算出bc=40.利用余弦定理a2=b2+c2-2bccosA,化简得出a2=(b+c)2-120,
结合三角形的周长为20得到关于a的方程,解之可得边a的长.
解答:解:∵A=60°,
∴S△ABC=
1
2
bcsinA=10
3
,即
3
4
bc=10
3

解之得bc=40
由余弦定理a2=b2+c2-2bccosA,得
a2=(b+c)2-3bc=(b+c)2-120
∵△ABC的周长a+b+c=20
∴b+c=20-a,得a2=(20-a)2-120,解之得a=7
故答案为:7
点评:本题给出三角形的面积和周长,在已知角A的情况下求边a的长.着重考查了利用正余弦定理解三角形、三角形的面积公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若△ABC的周长等于20,面积是10
3
,A=60°,则BC边的长是(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的周长等于20,面积是10
3
,A=60,则BC边的长是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的周长等于20,面积是10,A=60°,则BC边的长是
10-
3
10-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中a、b、c分别是角A、B、C的对边,若△ABC的周长等于20,面积是10
3
,A=60°,求a的值.

查看答案和解析>>

同步练习册答案