精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=|x|+|x-3|.
(1)解关于x的不等式f(x)-5≥x;
(2)设m,n∈{y|y=f(x)},试比较mn+4与2(m+n)的大小.

分析 (1)分类讨论,即可解关于x的不等式f(x)-5≥x;
(2)由(1)易知f(x)≥3,所以m≥3,n≥3,利用作差法,即可比较mn+4与2(m+n)的大小.

解答 解:(1)$f(x)=|x|+|{x-3}|=\left\{{\begin{array}{l}{3-2x,x<0}\\{3,0≤x≤3}\\{2x-3,x>3}\end{array}}\right.$…(2分)
得$\left\{{\begin{array}{l}{x<0}\\{3-2x≥x+5}\end{array}}\right.$或$\left\{{\begin{array}{l}{0≤x≤3}\\{3≥x+5}\end{array}}\right.$或$\left\{{\begin{array}{l}{x>3}\\{2x-3≥x+5}\end{array}}\right.$,解之得$x≤-\frac{2}{3}$或x∈ϕ或x≥8,
所以不等式的解集为$({-∞,-\frac{2}{3}}]∪[{8,+∞})$…(5分)
(2)由(1)易知f(x)≥3,所以m≥3,n≥3…(7分)
由于2(m+n)-(mn+4)=2m-mn+2n-4=(m-2)(2-n)…(8分)
且m≥3,n≥3,所以m-2>0,2-n<0,即(m-2)(2-n)<0,
所以2(m+n)<mn+4…(10分)

点评 本题考查绝对值不等式的解法,考查大小比较,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知命题p:函数y=3-ax+1的图象恒过定点(1,3);命题q:若函数y=f(x-3)为偶函数,则函数y=f(x)的图象关于直线x=3对称,则下列命题为真命题的是(  )
A.p∨qB.p∧qC.¬p∧qD.p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述的已知条件,可求得该女子前3天所织布的总尺数为$\frac{35}{31}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={-2,-1,0,1,2},B={x|x>-1},则A∩B=(  )
A.{0,1}B.{-1,0}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A,B,C所对的边分别为a,b,c,且$cosC=\frac{1}{8},C=2A$.
(1)求cosA的值;
(2)若a=4,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{lnx,x≥1}\\{1-\frac{x}{2},x<1}\end{array}\right.$,若F(x)=f[f(x)+1]+m有两个零点x1,x2,则x1+x2的取值范围是(  )
A.[4-2ln2,+∞)B.[1+$\sqrt{e}$,+∞)C.[4-2ln2,1+$\sqrt{e}$)D.(-∞,1+$\sqrt{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.把参数方程$\left\{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}\right.$化为普通方程,并说明它表示什么曲线:

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.三棱锥的四个面中,下列说法不正确的是(  )
A.不能都是直角三角形B.不能都是锐角三角形
C.不能都是等腰三角形D.可能都是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=(x-2)0+$\frac{1}{{\sqrt{9-{x^2}}}}$的定义域为{x|-3<x<3且x≠2}.

查看答案和解析>>

同步练习册答案