精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱中,,且

1)求证:平面平面

2)设的中点,判断并证明在线段上是否存在点,使平面;若存在,求三棱锥的体积.

【答案】1)证明详见解析;(2.

【解析】试题分析:本题以直三棱柱为几何背景,考查线线垂直、线面垂直、面面垂直、面面平行、线面平行、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,要证平面平面,需要证平面;第二问,作出辅助线,通过3边都平行,利用面面平行的判定得到面EFD//平面,再利用面面平行的性质得DE//平面,由于平面,所以是三棱锥的高,所以将转化为,再求解.

试题解析:(1直三棱柱侧面为矩形,且

四边形为正方形,

平面平面

平面

平面

平面平面.5

2)分别取的中点,连接

平面平面平面.8

平面.10

.12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的个数为( )
(1)
(2)已知向量 =(6,2)与 =(﹣3,k)的夹角是钝角,则k的取值范围是k<0
(3)若向量 能作为平面内所有向量的一组基底
(4)若 ,则 上的投影为
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知tanA,tanB是关于x的方程x2+(x+1)p+1=0的两个实根.
(1)求角C;
(2)求实数p的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数.

(1)求 的值;

(2)若方程 有且只有一个根,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)的图象如图所示.观察图象可知函数y=f(x)的定义域、值域分别是(  )

A.[﹣5,0]∪[2,6),[0,5]
B.[﹣5,6),[0,+∞)
C.[﹣5,0]∪[2,6),[0,+∞)
D.[﹣5,+∞),[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x|,g(x)=lg(ax2﹣4x+1),若对任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),则实数a的取值范围是(  )
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,如果存在实数使得,那么称的生成函数.

(1) 下面给出两组函数, 是否分别为的生成函数?并说明理由;

第一组:

第二组:

(2) 设 ,生成函数.若不等式上有解,求实数的取值范围;

(3) 设 ,取,生成函数图像的最低点坐标为.若对于任意正实数,且,试问是否存在最大的常数,使恒成立?如果存在,求出这个的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1的离心率为 ,焦距为2,右焦点为F,过点F的直线交椭圆于A、B两点.
(1)求椭圆C的方程;
(2)在x轴上是否存在定点M,使得 为定值?若存在,求出定值和定点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=﹣x2+(3﹣2m)x+2+m(0<m≤1).
(1)若x∈[0,m],证明:f(x)≤
(2)求|f(x)|在[﹣1,1]上的最大值g(m).

查看答案和解析>>

同步练习册答案