精英家教网 > 高中数学 > 题目详情

【题目】通过随机询问100名性别不同的大学生是否爱好踢毽子,得到如下的列联表:

随机变量经计算,统计量K2的观测值k0≈4.762,参照附表,得到的正确结论是(  )

A. 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”

B. 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”

C. 有97.5%以上的把握认为“爱好该项运动与性别有关”

D. 有97.5%以上的把握认为“爱好该项运动与性别无关”

【答案】A

【解析】

题目的条件中已经给出这组数据的观测值,只要把所给的观测值同节选的观测值表进行比较,发现它大于3.841,在犯错误的概率不超过5%的前提下,认为“爱好这项运动与性别有关”.

解:由题意算得, 4.7623.841,参照附表,可得

在犯错误的概率不超过5%的前提下,认为“爱好这项运动与性别有关”.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】假设关于某种设备的使用年限(年)与所支出的维修费用 (万元)有如下统计:

2

3

4

5

6

2.2

3.8

5.5

6.5

7.0

已知.

(1)求

(2)具有线性相关关系,求出线性回归方程;

(3)估计使用年限为10年时,维修费用约是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),其中.以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求出曲线的普通方程和曲线的直角坐标方程;

(2)已知曲线交于 两点,记点 相应的参数分别为 ,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的图像可以由y=cos2x的图像先纵坐标不变横坐标伸长到原来的2倍,再横坐标不变纵坐标伸长到原来的2倍,最后向右平移个单位而得到.

⑴求f(x)的解析式与最小正周期

⑵求f(x)在x∈(0,π)上的值域与单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 ()的一个焦点为椭圆内一点,若椭圆上存在一点,使得,则椭圆的离心率的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种产品,第一年投入资金1000万元,出售产品收入40万元,预计以后每年的投入资金是上一年的一半,出售产品所得收入比上一年多80万元,同时,当预计投入的资金低于20万元时,就按20万元投入,且当年出售产品收入与上一年相等.

(1)求第年的预计投入资金与出售产品的收入;

(2)预计从哪一年起该公司开始盈利?(注:盈利是指总收入大于总投入)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2lnx-ax2,若α,β都属于区间[1,4],且β-α=1,f(α)=f(β),则实数a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),以为极点, 轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)求曲线的极坐标方程;

(2)设直线与曲线相交于两点,求的值.

【答案】(1)曲线的极坐标方程为: ;(2)6.

【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线的普通方程,再根据化为极坐标方程;(2)将直线l的极坐标方程代入曲线的极坐标方程得,再根据的值.

试题解析:解:1)将方程消去参数

∴曲线的普通方程为

代入上式可得

∴曲线的极坐标方程为: -

2)设两点的极坐标方程分别为,

消去

根据题意可得是方程的两根,

型】解答
束】
23

【题目】选修4—5:不等式选讲

已知函数

(1)时,求关于x的不等式的解集;

(2)若关于x的不等式有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是公差不为零的等差数列,满足,且成等比数列.

(1)求数列的通项公式;

(2)设数列满足,求数列的前项和.

【答案】(1);(2)

【解析】试题分析:1)设等差数列 的公差为,由a3=7,且成等比数列.可得,解之得即可得出数列的通项公式;

2)由(1)得,则,由裂项相消法可求数列的前项和.

试题解析:(1)设数列的公差为,且由题意得

,解得

所以数列的通项公式.

(2)由(1)得

.

型】解答
束】
18

【题目】四棱锥的底面为直角梯形,为正三角形.

(1)点为棱上一点,若平面,求实数的值;

(2)求点B到平面SAD的距离.

查看答案和解析>>

同步练习册答案