精英家教网 > 高中数学 > 题目详情
(2013•东城区二模)已知函数f(x)=lnx+
a
x
(a>0).
(1)求f(x)的单调区间;
(2)如果P(x0,y0)是曲线y=f(x)上的点,且x0∈(0,3),若以P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的最小值.
分析:(1)先求导数,然后解导数不等式,可求函数的单调区间.
(2)求出导数得到切线的斜率,利用斜率关系求实数a的最小值.
解答:解:(Ⅰ) f(x)=lnx+
a
x
,定义域为(0,+∞),
f′(x)=
1
x
-
a
x2
=
x-a
x2

因为a>0,由f'(x)>0,得x∈(a,+∞),由f'(x)<0,得x∈(0,a),
所以f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a).
(Ⅱ)由题意,以P(x0,y0)为切点的切线的斜率k满足k=f′(x0)=
x0-a
x
2
0
1
2
(0<x0<3),
所以a≥-
1
2
x02+x0
对0<x0<3恒成立.
又当x0>0时,-
3
2
<-
1
2
x02+x0
1
2

所以a的最小值为
1
2
点评:本题考查导数与单调性的关系,以及利用导数求切线斜率.熟练掌握各种导数的运算是解决导数问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东城区二模)已知函数f(x)=lnx+
a
x
(a>0).
(1)求f(x)的单调区间;
(2)如果P(x0,y0)是曲线y=f(x)上的任意一点,若以P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的最小值;
(3)讨论关于x的方程f(x)=
x3+2(bx+a)
2x
-
1
2
的实根情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)f(x)=
-
2
x
 ,   x<0
3+log2x ,  x>0
,则f(f(-1))等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)根据表格中的数据,可以断定函数f(x)=lnx-
3
x
的零点所在的区间是(  )
x 1 2 e 3 5
lnx 0 0.69 1 1.10 1.61
3
x
3 1.5 1.10 1 0.6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)对定义域的任意x,若有f(x)=-f(
1
x
)
的函数,我们称为满足“翻负”变换的函数,下列函数:
y=x-
1
x

②y=logax+1,
y=
x,0<x<1
0,x=1
-
1
x
,x>1

其中满足“翻负”变换的函数是
①③
①③
. (写出所有满足条件的函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,f(x)+xf′(x)<0(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),则a,b,c的大小关系是(  )

查看答案和解析>>

同步练习册答案