精英家教网 > 高中数学 > 题目详情
2.集合M={x|x=n,n∈Z},N={x|x=$\frac{n}{2}$,n∈Z},P={x|x=n+$\frac{1}{2}$,n∈Z},则下列各式中正确的(  )
A.M=NB.M∪N=PC.N=M∪PD.N=M∩P

分析 N={x|x=$\frac{n}{2}$,n∈Z},分类讨论,可得结论.

解答 解:N={x|x=$\frac{n}{2}$,n∈Z},当n=2k,k∈Z时,N={x|x=k,k∈Z}
当n=2k+1,k∈Z时,N={x|x=k+$\frac{1}{2}$,k∈Z}
∴N=M∪P.
故选:C.

点评 本题考查集合的运算与关系,考查学生的计算能力,正确分类讨论是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.若一次函数f(x)的定义域为[-2,2]时,值域为[-4,4].请求出f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=x+$\frac{1}{x}$的奇偶性是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)=x2+$\frac{16}{x}$,用定义证明f(x)在[2,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知不等式ax2+bx+1>0的解集为(-∞,1)∪(3,+∞),不等式x2+bx+a<0的解集为A,集合B={x||x-t|$≤\frac{1}{2}$,x∈R}.
(1)求集合A;
(2)若A∩B=∅,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=2x-1-$\sqrt{13-4x}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$(lo{g}_{\frac{1}{2}}x)^{2}$-$\frac{1}{2}$$lo{g}_{\frac{1}{2}}x$+5,求在区间[2,4]上f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l1:(m2-m-2)x+2y+m-2=0,l2:2x+(m-2)y+2=0,当m为何值时.
(1)l1⊥l2;(2)l1∥l2;(3)l1、l2有交点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若f(x)是定义在实数集R上的偶函数,在区间(-∞,0)上是增加的,又f(2a2+a+1)<f( 2a2+2a+3),求a的取值范围.

查看答案和解析>>

同步练习册答案