精英家教网 > 高中数学 > 题目详情
表中显示的是某商品从4月份到10月份的价格变化统计如下:
 x(月) 4 5 6 7 8 910 
 y(元) 15 16.9 19 20.9 23.1 25.1 27
在一次函数、二次函数、指数函数、对数函数这四个函数模型中,请确认最能代表上述变化的函数,并预测该商品11月份的价格为
 
元(精确到整数).
考点:函数模型的选择与应用
专题:计算题,函数的性质及应用
分析:由题意,函数是单调增函数,且增长幅度不大.故设y=kx+b,代入(4,15),(6,19),求出函数解析式,即可得出结论.
解答: 解:由题意,函数是单调增函数,且增长幅度不大.
故设y=kx+b,则
15=4k+b
19=6k+b
,∴k=2,b=7,∴y=2x+7,
∴x=11时,y=29,
故答案为:29.
点评:本题考查函数模型的选择与应用,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别是a、b、c,若∠C=
2
3
π,a、b、c依次成等差数列,且公差为2.
(1)求c;
(2)如图,A′,B′分别在射线CA,CB上运动,设∠A′B′C=θ,试用θ表示线段B'C的长,并求其范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:?x∈R,使得
1
2x2+1
>λ.若“-p”为真命题,则实数λ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<
π
2
)的图象如图所示.
(1)求A、ω及φ的值;
(2)若α∈(-
π
2
,0),且f(
α
2
+
π
12
)=
5
13
,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若各项均为正数的数列{an}满足an-1=sinan(n∈N*),则下列说法中正确的是(  )
A、{an}是单调递减数列
B、{an}是单调递增数列
C、{an}可能是等差数列
D、{an}可能是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=1+logax(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-2=0上,则m2+n2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是第二象限角,则下列式子中值恒为正的是(  )
A、sin
α
2
B、cos
α
2
C、tan
α
2
D、sin
α
2
-cos
α
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱A1B1C1-ABC中,AB⊥BC,E、F分别是A1B,AC1的中点.
(1)求证:EF∥平面ABC;
(2)求证:平面AEF⊥平面AA1B1B;
(3)若AB=BC=a,A1A=2a,求三棱锥F-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点 A(1,-1),B为圆x2+y2=9上的一个动点,则线段AB的中垂线与线段OB的交点E的轨迹是
 

查看答案和解析>>

同步练习册答案