精英家教网 > 高中数学 > 题目详情

(12分)已知函数.
(Ⅰ)若,求曲线处切线的斜率;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得 ,求的取值范围.

(Ⅰ)曲线处切线的斜率为
(Ⅱ)函数的单调递增区间为,单调递减区间为. (Ⅲ).       

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(1)求函数的单调区间和极值;
(2)已知函数的图象与函数的图象关于直线对称;
证明:当时,
(3)如果,证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

其中,曲线 在点处的切线垂直于轴.
(Ⅰ)求的值;
(Ⅱ)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(I)若,求函数的极值;
(II)若对任意的,都有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题13分)已知函数为常数)
(1)若在区间上单调递减,求的取值范围;
(2)若与直线相切:
(ⅰ)求的值;
(ⅱ)设处取得极值,记点M (,),N(,),P(), , 若对任意的m (, x),线段MP与曲线f(x)均有异于M,P的公共点,试确定的最小值,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若是函数的极值点,求实数的值。
(2)若对任意的为自然对数的底数)都有成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为实数,的导函数.
(Ⅰ)若,求上的最大值和最小值;
(Ⅱ)若上均单调递增,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(I)讨论的单调性;
(II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若曲线在点处的切线的倾斜角为,求实数的值;
(2)若函数在区间上单调递增,求实数实数的范围.

查看答案和解析>>

同步练习册答案