精英家教网 > 高中数学 > 题目详情
18.在直角坐标平面xOy内,一条光线从点(2,4)射出,经直线x+y-1=0反射后,经过点(3,2),则反射光线的方程为x-26y+1=0.

分析 设点P点(2,4)关于直线x+y-1=0的对称点为P′(a,b),则$\left\{\begin{array}{l}{\frac{2+a}{2}+\frac{4+b}{2}-1=0}\\{\frac{b-4}{a-2}×(-1)=-1}\end{array}\right.$,解得a,b.再利用点斜式即可得出.

解答 解:设点P点(2,4)关于直线x+y-1=0的对称点为P′(a,b),
则$\left\{\begin{array}{l}{\frac{2+a}{2}+\frac{4+b}{2}-1=0}\\{\frac{b-4}{a-2}×(-1)=-1}\end{array}\right.$,解得a=-3,b=-1.
∴反射光线的斜率为:$\frac{-1-2}{-3-3}$=$\frac{1}{2}$,
∴反射光线的方程y-2=$\frac{1}{2}$(x-3),
化为x-2y+1=0.
故答案为:x-2y+1=0.

点评 本题考查了垂直平分线的性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若点P是抛物线x2=4y上一动点,则点P到直线x-2y-3=0和x轴的距离之和的最小值是(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.2D.$\sqrt{5}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)
频数62638228
(Ⅰ)在答题卡上作出这些数据的频率分布直方图:
(Ⅱ)估计这种产品质量指标值的众数、中位数及平均数(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C的半径为1,圆心C在直线3x-y=0上.
(Ⅰ)若圆C被直线x-y+3=0截得的弦长为$\sqrt{2}$,求圆C的标准方程;
(Ⅱ)设点A(0,3),若圆C上总存在两个点到点A的距离为2,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.(文)不等式ax2+bx+2>0的解集为($-\frac{1}{2},\frac{1}{3}$),则ab的值为(  )
A.24B.-24C.12D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若非零向量$\vec a$与向量$\vec b$的夹角为钝角,$|{\vec b}|=2$,且当$t=-\frac{1}{2}$时,$|{\vec b-t\vec a}|$(t∈R)取最小值$\sqrt{3}$.向量$\vec c$满足$({\vec c-\vec b})⊥({\vec c-\vec a})$,则当$\vec c•({\vec a+\vec b})$取最大值时,$|{\vec c-\vec b}|$等于(  )
A.$\sqrt{6}$B.$2\sqrt{3}$C.$2\sqrt{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列各图是正方体和正三棱柱(两底面为正三角形的直棱柱),G、N、M、H分别是顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式$\frac{{\sqrt{x+1}}}{x-6}≤0$的解为[-1,6).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)=\left\{\begin{array}{l}|lgx|({0<x<10})\\-\frac{1}{2}x+6({x≥10})\end{array}\right.$,若a<b<c,且f(a)=f(b)=f(c),则abc的取值范围是(10,12).

查看答案和解析>>

同步练习册答案