精英家教网 > 高中数学 > 题目详情

【题目】某居民小区内建有一块矩形草坪ABCD,AB=50米,,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设三条小路OE,EFOF,考虑到小区整体规划,要求OAB的中点,点E在边BC上,点F在边AD上,且,如图所示.

(Ⅰ)设,试将的周长l表示成的函数关系式,并求出此函数的定义域;

(Ⅱ)经核算,三条路每米铺设费用均为400元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.

【答案】(Ⅰ)见解析;()见解析.

【解析】

(Ⅰ)根据三角函数定义及勾股定理,即可表示出EF长度,进而用α表示出周长。根据点E、F的极限位置,判断出角的大小范围得到定义域。

(Ⅱ)利用三角函数换元,将周长转化为关于t的函数,结合角α的范围求得t的范围,进而得到l的范围,即为费用最低时的长度。

(Ⅰ)∵在中,,

中,

.

当点F在点D时,这时角最小,求得此时

EC点时,这时角最大,求得此时.故此函数的定义域为

(Ⅱ)由题意知,要求铺路总费用最低,只要求的周长l最小值即可.

由()得,

,则

,得

从而,当,即BE=25时,

所以当 米时,铺路总费用最低,最低总费用为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某投资人欲将5百万元奖金投入甲、乙两种理财产品,根据银行预测,甲、乙两种理财产品的收益与投入奖金的关系式分别为,其中为常数且.设对乙种产品投入奖金百万元,其中

1)当时,如何进行投资才能使得总收益最大;(总收益

2)银行为了吸储,考虑到投资人的收益,无论投资人奖金如何分配,要使得总收益不低于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形中,

1)若为等边三角形,且 的中点,求

2)若 ,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣|x|+2a﹣1(a为实常数).

(1)若a=1,求f(x)=3的解;

(2)求f(x)在区间[1,2]的最小值为g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数满足

(1)求的值;

(2)判断函数的奇偶性,并说明理由;

(3)若b=1,且函数上是单调增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的定义域为R,且满足

(1)f(1)=3

(2)对于任意的,总有

(3)对于任意的

(I)求f(0)及f(-1)的值

(II)求证:函数y=f(x)-1为奇函数

(III)若,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.

(1)证明PA∥平面BDE;
(2)证明:DE⊥面PBC;
(3)求直线AB与平面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),则实数a的取值范围为(
A.[﹣ ]
B.[﹣ ]
C.[﹣ ]
D.[﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《张丘建算经》是公元5世纪中国古代内容丰富的数学著作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺.问:每天多织多少布?”已知1匹=4丈,1丈=10尺,估算出每天多织的布的布约有(
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺

查看答案和解析>>

同步练习册答案