精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的不等式(kx﹣k2﹣4)(x﹣4)>0,其中k∈R;
(1)当k=4时,求上述不等式的解集;
(2)当上述不等式的解集为(﹣5,4)时,求k的值.

【答案】
(1)解:关于x的不等式(kx﹣k2﹣4)(x﹣4)>0,

当k=4时,不等式化为(4x﹣16﹣4)(x﹣4)>0,

解得x<4或x>5,

所以不等式的解集为(﹣∞,4)∪(5,+∞);


(2)解:当不等式(kx﹣k2﹣4)(x﹣4)>0的解集为(﹣5,4)时,

解得k=﹣1或k=﹣4.


【解析】(1)当k=4时,不等式化为(4x﹣16﹣4)(x﹣4)>0,求出解集即可,(2)不等式的解集为(﹣5,4)时,可得出一根为4,一根为-5,即可解得k的大小.
【考点精析】利用解一元二次不等式对题目进行判断即可得到答案,需要熟知求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(1﹣x)﹣ln(1+x),则f(x)是( )
A.奇函数,且在(0,1)上是增函数
B.奇函数,且在(0,1)上是减函数
C.偶函数,且在(0,1)上是增函数
D.偶函数,且在(0,1)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂生产某种产品,当年产量在150吨至250吨时,每年的生产成本y万元与年产量x吨之间的关系可可近似地表示为y= ﹣30x+4000.
(1)若每年的生产总成本不超过2000万元,求年产量x的取值范围;
(2)求年产量为多少吨时,每吨的平均成本最低,并求每吨的最低成本.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1﹣EC﹣D的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=ax2+3a是定义在[a2﹣5,a﹣1]上的偶函数,令函数g(x)=f(x)+f(1﹣x),则函数g(x)的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】非空集合G关于运算⊕满足:
⑴对任意a,b∈G,都有a+b∈G;
⑵存在e∈G使得对于一切a∈G都有a⊕e=e⊕a=a,
则称G是关于运算⊕的融洽集,
现有下列集合与运算:
①G是非负整数集,⊕:实数的加法;
②G是偶数集,⊕:实数的乘法;
③G是所有二次三项式构成的集合,⊕:多项式的乘法;
④G={x|x=a+b ,a,b∈Q},⊕:实数的乘法;
其中属于融洽集的是(请填写编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2,3},B={x|x2﹣(a+1)x+a=0,x∈R},若A∪B=A,求实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长是2的正方体ABCD﹣A1B1C1D1中,E,F分别为AB,A1C的中点.应用空间向量方法求解下列问题.

(1)求EF的长
(2)证明:EF∥平面AA1D1D;
(3)证明:EF⊥平面A1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a、b、c∈R,a>b,则下列不等式成立的是(  )
A.
B.a2>b2
C.a(c2+1)>b(c2+1)
D.a|c|>b|c|

查看答案和解析>>

同步练习册答案