精英家教网 > 高中数学 > 题目详情

观察下列算式:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
你能得出怎样的结论?

解:1+3+5+…+(2n-1)=n2
数学归纳法:
(1)当n=1时,左=1=右,结论成立;
(2)假设n=k(k∈N*)时结论成立,即1+3+…+(2k-1)=k2成立.
则n=k+1时,
左边=1+3+…+(2k-1)+[2(k+1)-1]=k2+2k+1=(k+1)2=右边
所以n=k是结论成立,则n=k+1时结论也成立;
综上所述,结论对于所有的自然数都成立.
分析:根据已知条件,等式左边为n个奇数的和,则等式右边为n的平方,故可得结论,再用数学归纳法进行证明.
点评:本题重点考查归纳推理,考查数学归纳法,解题的关键是根据已知条件,等式左边、等式右边的特点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

观察下列算式:
1=12
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52

对任意正整数n,你能得出怎样的结论?用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列算式:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
你能得出怎样的结论?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

观察下列算式:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
你能得出怎样的结论?

查看答案和解析>>

科目:高中数学 来源:2011-2012学年新课标高三(上)一轮复习数学专项训练:逻辑与推理(解析版) 题型:解答题

观察下列算式:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
你能得出怎样的结论?

查看答案和解析>>

同步练习册答案