精英家教网 > 高中数学 > 题目详情

【题目】某公司为提高员工的综合素质,聘请专业机构对员工进行专业技术培训,其中培训机构费用成本为12000元.公司每位员工的培训费用按以下方式与该机构结算:若公司参加培训的员工人数不超过30人时,每人的培训费用为850元;若公司参加培训的员工人数多于30人,则给予优惠:每多一人,培训费减少10元.已知该公司最多有60位员工可参加培训,设参加培训的员工人数为人,每位员工的培训费为元,培训机构的利润为元.

(1)写出 之间的函数关系式;

(2)当公司参加培训的员工为多少人时,培训机构可获得最大利润?并求最大利润.

【答案】(1);(2)

【解析】分析:(1)根据题意,只要注意超过30人时,每多1人才能减少10元,因此可分类,),在时,培训费用为

(2)利润是用每人的培训费用乘以培训人数减去成本12000,根据一次函数与二次函数的性质分类求得最大值,然后比较即得.

详解:(1)依题意得,当时,

时,.

.

(2)当时,,

时, 取得最大值.

时,

,

,

时, 取得最大值.

因为

当公司参加培训的员工人数为时,

培训机构可获得最大利润元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下面推理过程中使用了类比推理方法,其中推理正确的是( )

A. 平面内的三条直线,若,则.类比推出:空间中的三条直线,若,则

B. 平面内的三条直线,若,则.类比推出:空间中的三条向量,若,则

C. 在平面内,若两个正三角形的边长的比为,则它们的面积比为.类比推出:在空间中,若两个正四面体的棱长的比为,则它们的体积比为

D. ,则复数.类比推理:,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是递增的等比数列且,设是数列的前项和,数列n项和为,若不等式对任意的恒成立,则实数的最大值是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求函数的单调递减区间;

2)若关于的不等式恒成立,求整数的最小值;

3)若,正实数满足,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,且a≠1,则双曲线C1 ﹣y2=1与双曲线C2 ﹣x2=1的(
A.焦点相同
B.顶点相同
C.渐近线相同
D.离心率相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.

(1)排成前后两排,前排3人,后排4人;(2)全体站成一排,甲不站排头也不站排尾;

(3)全体站成一排,女生必须站在一起;(4)全体站成一排,男生互不相邻.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从6名短跑运动员中选出4人参加4×100 m接力赛.试求满足下列条件的参赛方案各有多少种?(用数字作答)

(1)甲不能跑第一棒和第四棒;(2)甲不能跑第一棒,乙不能跑第四棒

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知,点是直线与圆的公共点,则的最大值为( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数在区间上的值域;

(2)当时,试讨论函数的单调性;

(3)若对任意,存在,使得不等式成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案