精英家教网 > 高中数学 > 题目详情

【题目】在2018年3月郑州第二次模拟考试中,某校共有100名文科学生参加考试,其中语文考试成绩低于130的占95%人,数学成绩的频率分布直方图如图:

(Ⅰ)如果成绩不低于130的为特别优秀,这100名学生中本次考试语文、数学成绩特别优秀的大约各多少人?

(Ⅱ)如果语文和数学两科都特别优秀的共有3人.

(ⅰ)从(Ⅰ)中的这些同学中随机抽取2人,求这两人两科成绩都优秀的概率.

(ⅱ)根据以上数据,完成列联表并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.

语文特别优秀

语文不特别优秀

合计

数学特别优秀

数学不特别优秀

合计

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】;()(i),(ii)有把握.

【解析】分析:(1)由频率分布直方图求出成绩不低于130的概率,进而得到求解,

(2)列举出所有基本事件,

(3)根据计算数据列出列联表,计算出,查表可得。

详解:(Ⅰ)我校共有100名文科学生参加考试,其中语文考试成绩低于130的有95%人,语文成绩特别优秀的概率为语文特别优秀的同学有人,数学成绩特别优秀的概率为数学特别优秀的同学有人;

)(i)语文数学两科都优秀的有3人,单科优秀的有3人,

记两科都优秀的3人分别为单科优秀的3人分别为从中随机抽取2共有

15种,其中这两人成绩都优秀的有3则这两人两科成绩都优秀的概率为

ii

95%的把握认为语文特别优秀的同学,数学也特别优秀.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点为椭圆上一点.

1)求椭圆C的方程;

2)已知两条互相垂直的直线经过椭圆的右焦点,与椭圆交于四点,求四边形面积的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某“农家乐”接待中心有客房200间,每间日租金为40元,每天都客满.根据实际需要,该中心需提高租金,如果每间客房日租金每增加4元,客房出租就会减少10.(不考虑其他因素)

1)设每间客房日租金提高元(),记该中心客房的日租金总收入为,试用表示

2)在(1)的条件下,每间客房日租金为多少时,该中心客房的日租金总收入最高?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在地面上同一地点观测远方匀速垂直上升的热气球,在上午10点整热气球的仰角是到上午10点20分的仰角变成.请利用下表判断到上午11点整时,热气球的仰角最接近哪个度数( )

0.5

0.559

0.629

0.643

0.656

0.669

0.682

0.695

0.707

0.866

0.829

0.777

0.766

0.755

0.743

0.731

0.719

0.707

0.577

0.675

0.810

0.839

0.869

0.900

0.933

0.966

1.0

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接夏季旅游旺季的到来,少林寺单独设置了一个专门安排游客住宿的客栈,寺庙的工作人员发现为游客准备的一些食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:

①每年相同的月份,入住客栈的游客人数基本相同;

②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;

③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.

(1)试用一个正弦型三角函数描述一年中入住客栈的游客人数y与月x份之间的关系;

(2)请问哪几个月份要准备400份以上的食物?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全世界越来越关注环境保护问题,某监测站点于2018年1月某日起连续天监测空气质量指数(),数据统计如下:

空气质量指数()

空气质量等级

空气优

空气良

轻度污染

中度污染

重度污染

天数

20

40

10

5

(1)根据所给统计表和频率分布直方图中的信息求出的值,并完成频率分布直方图;

(2)由频率分布直方图,求该组数据的众数和中位数;

(3)在空气质量指数分别属于的监测数据中,用分层抽样的方法抽取天,再从中任意选取天,求事件“两天空气都为良”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(0,+∞)上的函数f(x)的导数满足x2<1,则下列不等式中一定成立的是(  )

A.f()+1<f()<f()﹣1B.f()+1<f()<f()﹣1

C.f()﹣1<f()<f()+1D.f()﹣1<f()<f()+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣ex(a∈R).其中e是自然对数的底数.

(1)讨论函数f(x)的单调性并求极值;

(2)令函数g(x)=f(x)+ex,若x∈[1,+∞)时,g(x)≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点分别是圆心在原点,半径为的圆上的动点.动点从初始位置开始,按逆时针方向以角速度作圆周运动,同时点从初始位置开始,按顺时针方向以角速度作圆周运动.记时刻,点的纵坐标分别为.

(Ⅰ)求时刻,两点间的距离;

(Ⅱ)求关于时间的函数关系式,并求当时,这个函数的值域.

查看答案和解析>>

同步练习册答案