精英家教网 > 高中数学 > 题目详情

【题目】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:

为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为.

(1)求乙离子残留百分比直方图中的值;

(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).

【答案】(1) (2) .

【解析】

(1)可解得的值;(2)根据公式求平均数.

(1)由题得,解得,由,解得.

(2)由甲离子的直方图可得,甲离子残留百分比的平均值为

乙离子残留百分比的平均值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,为等边三角形,是线段上的一点,且平面.

(1)求证:的中点;

(2)若的中点,连接,平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点也是椭圆的一个焦点,点在椭圆短轴上,且.

(1)求椭圆的方程;

(2)设为椭圆上的一个不在轴上的动点,为坐标原点,过椭圆的右焦点的平行线,交曲线两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)记的最大值为,若,求证:

(3)若,记集合中的最小元素为,设函数,求证:的极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,对于任意正实数,不等式恒成立,试判断实数的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200.在机器使用期间,如果备件不足再购买,则每个500.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元), 表示购机的同时购买的易损零件数.

=19,yx的函数解析式;

若要求需更换的易损零件数不大于的频率不小于0.5,的最小值;

假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右顶点为,上顶点为,右焦点为.连接并延长与椭圆相交于点,且

(Ⅰ)求椭圆的方程;

(Ⅱ)设经过点的直线与椭圆相交于不同的两点,直线分别与直线相交于点,点.若的面积是的面积的2倍,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的焦距为4,且过点

1)求椭圆的方程

2)设椭圆的上顶点为,右焦点为,直线与椭圆交于两点,问是否存在直线,使得的垂心,若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题的真假.

1)如果直线平行于直线,则平行于经过的任何一个平面;

2)如果一条直线不在平面内,则这条直线就与这个平面平行;

3)过直线外一点,可以作无数个平面与这条直线平行;

4)如果一条直线与一个平面平行,则它与该平面内的任何直线都平行.

查看答案和解析>>

同步练习册答案