精英家教网 > 高中数学 > 题目详情

【题目】某人要利用无人机测量河流的宽度,如图,从无人机A处测得正前方河流的两岸B,C的俯角分别为75°,30°,此时无人机的高是60米,则河流的宽度BC等于(

A.
B.
C.
D.

【答案】C
【解析】解:如图
由图可知,∠DAB=15°,
∵tan15°=tan(45°﹣30°)=2﹣
在Rt△ADB中,又AD=60,
∴DB=ADtan15°=60×(2﹣ )=120﹣60
在Rt△ADC中,∠DAC=60°,AD=60,
∴DC=ADtan60°=60
∴BC=DC﹣DB=60 ﹣(120﹣60 )=120( ﹣1)(m).
∴河流的宽度BC等于120( ﹣1)m.
故选:C.
由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在我国古代著名的数学专著《九章算术》里有﹣段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里:驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:需日相逢.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点;
(I)求异面直线A1B,AC1所成角的余弦值;
(II)求直线AB1与平面C1AD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是正方形,PA⊥平面ABCD,PA=AB=2.

(1)若E,F分别是PC,AD的中点,证明:EF∥平面PAB;
(2)若E是PC的中点,F是AD上的动点,问AF为何值时,EF⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】比较下列各组数中两个数的大小.
(1)
(2)3 与3.1
(3)
(4)0.20.6与0.30.4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x . (Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+2x+c的对称轴为x=1,g(x)=x+ (x>0).
(1)求函数g(x)的最小值及取得最小值时x的值;
(2)试确定c的取值范围,使g(x)﹣f(x)=0至少有一个实根;
(3)若F(x)=﹣f(x)+4x+c,存在实数t,对任意x∈[1,m],使F(x+t)≤3x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(x+1)﹣f(x)=2x(x∈R),且f(0)=1.
(1)求f(x)的解析式;
(2)若关于x的方程f(x)=x+m有区间(﹣1,2)上有唯一实数根,求实数的取值范围(注:相等的实数根算一个).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x﹣a|+|2x+1|(a>0),g(x)=x+2.
(1)当a=1时,求不等式f(x)≤g(x)的解集;
(2)若f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案