【题目】数列{2n﹣1}的前n项1,3,7,…,2n﹣1组成集合(n∈N*),从集合An中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),记Sn=T1+T2+…+Tn,例如当n=1时,A1={1},T1=1,S1=1;当n=2时,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7,试写出Sn=__.
科目:高中数学 来源: 题型:
【题目】对于定义域为R的函数,若函数是奇函数,则称为正弦奇函数.已知 是单调递增的正弦奇函数,其值域为R,.
(1)已知是正弦奇函数,证明:“为方程的解”的充要条件是“为方程的解”;
(2)若,求的值;
(3)证明:是奇函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在圆上任取一点,过点作轴的垂线段,为垂足,当点在圆上运动时,点在线段上,且,点的轨迹为曲线.
(1)求曲线的方程;
(2)过抛物线:的焦点作直线交抛物线于,两点,过且与直线垂直的直线交曲线于另一点,求面积的最小值,以及取得最小值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年11月河南省三门峡市成功入围“十佳魅力中国城市”,吸引了大批投资商的目光,一些投资商积极准备投入到“魅力城市”的建设之中.某投资公司准备在2018年年初将四百万元投资到三门峡下列两个项目中的一个之中.
项目一:天坑院是黄土高原地域独具特色的民居形式,是人类“穴居”发展史演变的实物见证.现准备投资建设20个天坑院,每个天坑院投资0.2百万元,假设每个天坑院是否盈利是相互独立的,据市场调研,到2020年底每个天坑院盈利的概率为,若盈利则盈利投资额的40%,否则盈利额为0.
项目二:天鹅湖国家湿地公园是一处融生态、文化和人文地理于一体的自然山水景区.据市场调研,投资到该项目上,到2020年底可能盈利投资额的50%,也可能亏损投资额的30%,且这两种情况发生的概率分别为p和.
(1)若投资项目一,记为盈利的天坑院的个数,求(用p表示);
(2)若投资项目二,记投资项目二的盈利为百万元,求(用p表示);
(3)在(1)(2)两个条件下,针对以上两个投资项目,请你为投资公司选择一个项目,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根,称为的特征根.
(1)讨论函数的奇偶性,并说明理由;
(2)求表达式;
(3)把函数,的最大值记作、最小值记作,令,若恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)将曲线上各点的纵坐标伸长为原来的倍(横坐标不变)得到曲线,求的参数方程;
(2)若,分别是直线与曲线上的动点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,当,时,的值域为,,当,时,的值域为,,依此类推,一般地,当,时,的值域为,,其中、为常数,且,.
(1)若,求数列,的通项公式;
(2)若,问是否存在常数,使得数列满足?若存在,求的值;若不存在,请说明理由;
(3)若,设数列,的前项和分别为,,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图数表:
每一行都是首项为1的等差数列,第行的公差为,且每一列也是等差数列,设第行的第项为.
(1)证明:成等差数列,并用表示();
(2)当时,将数列分组如下:(),(),(),…(每组数的个数构成等差数列). 设前组中所有数之和为,求数列的前项和;
(3)在(2)的条件下,设是不超过20的正整数,当时,求使得不等式恒成立的所有的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某加油站拟建造如图所示的铁皮储油罐(不计厚度,长度单位为米),其中储油罐的中间为圆柱形,左右两端均为半球形,(为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为千元.设该储油罐的建造费用为千元.
(1) 写出关于的函数表达式,并求该函数的定义域;
(2) 若预算为万元,求所能建造的储油罐中的最大值(精确到),并求此时储油罐的体积(单位: 立方米,精确到立方米).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com