精英家教网 > 高中数学 > 题目详情

【题目】已知对任意x∈R,恒有f(﹣x)=﹣f(x),g(﹣x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有(
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

【答案】B
【解析】解:由f(﹣x)=﹣f(x),g(﹣x)=g(x),
知f(x)为奇函数,g(x)为偶函数.
又x>0时,f′(x)>0,g′(x)>0,
知在区间(0,+∞)上f(x),g(x)均为增函数
由奇、偶函数的性质知,
在区间(﹣∞,0)上f(x)为增函数,g(x)为减函数
则当x<0时,f′(x)>0,g′(x)<0.
故选B
【考点精析】掌握函数奇偶性的性质和导数的几何意义是解答本题的根本,需要知道在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇;通过图像,我们可以看出当点趋近于时,直线与曲线相切.容易知道,割线的斜率是,当点趋近于时,函数处的导数就是切线PT的斜率k,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1时,若,求的取值范围

2若定义在上奇函数满足,且当时,

上的反函数

3对于(2)中的若关于的不等式上恒成立,求实

的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣aln(1+x)(a∈R),g(x)=x2emx(m∈R).
(1)当a=1,求函数f(x)的最大值
(2)当a<0,且对任意实数x1 , x2∈[0,2],f(x1)+1≥g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R, ,B={x|log3x≤2}. (Ⅰ)求A∩B;
(Ⅱ)求U(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算,该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为: ,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为元,若该项目不获利,政府将给予补贴.

(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?

(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形, 的中点。

1)证明: 平面;

2)设 ,三棱锥的体积 ,求A到平面PBC的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m∈R,复数z= +(m2+2m﹣3)i,当m为何值时,
(1)z∈R;
(2)z是纯虚数;
(3)z对应的点位于复平面第二象限;
(4)(选做)z对应的点在直线x+y+3=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,PD⊥底面ABCD,点M、N分别是棱AB、CD的中点.
(1)证明:BN⊥平面PCD;
(2)在线段PC上是否存在点H,使得MH与平面PCD所成最大角的正切值为 ,若存在,请求出H点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直线与曲线在第一象限和第三象限分别交于点和点,分别由点轴作垂线,垂足分别为,记四边形的面积为S.

求出点的坐标及实数的取值范围;

取何值时,S取得最小值,并求出S的最小值.

查看答案和解析>>

同步练习册答案