精英家教网 > 高中数学 > 题目详情
7.计算下列各式:
(1)3(2$\overrightarrow{a}$-$\overrightarrow{b}$)-2(4$\overrightarrow{a}$-3$\overrightarrow{b}$);
(2)$\frac{1}{3}$(4$\overrightarrow{a}$+3$\overrightarrow{b}$)-$\frac{1}{2}$(3$\overrightarrow{a}$-$\overrightarrow{b}$)-$\frac{3}{2}$$\overrightarrow{b}$;
(3)2(3$\overrightarrow{a}$-4$\overrightarrow{b}$+$\overrightarrow{c}$)-3(2$\overrightarrow{a}$+$\overrightarrow{b}$-3$\overrightarrow{c}$).

分析 利用向量的线性运算即可得出.

解答 解:(1)3(2$\overrightarrow{a}$-$\overrightarrow{b}$)-2(4$\overrightarrow{a}$-3$\overrightarrow{b}$)=$6\overrightarrow{a}-3\overrightarrow{b}$-8$\overrightarrow{a}$+6$\overrightarrow{b}$=-2$\overrightarrow{a}$+3$\overrightarrow{b}$;
(2)$\frac{1}{3}$(4$\overrightarrow{a}$+3$\overrightarrow{b}$)-$\frac{1}{2}$(3$\overrightarrow{a}$-$\overrightarrow{b}$)-$\frac{3}{2}$$\overrightarrow{b}$=$\frac{4}{3}\overrightarrow{a}+\overrightarrow{b}$-$\frac{3}{2}\overrightarrow{a}$+$\frac{1}{2}\overrightarrow{b}$+$\frac{3}{2}\overrightarrow{b}$=$-\frac{1}{6}\overrightarrow{a}$+2$\overrightarrow{b}$;
(3)2(3$\overrightarrow{a}$-4$\overrightarrow{b}$+$\overrightarrow{c}$)-3(2$\overrightarrow{a}$+$\overrightarrow{b}$-3$\overrightarrow{c}$)=$6\overrightarrow{a}-8\overrightarrow{b}$+2$\overrightarrow{c}$-6$\overrightarrow{a}$-3$\overrightarrow{b}$+9$\overrightarrow{c}$=-11$\overrightarrow{b}$+11$\overrightarrow{c}$.

点评 本题考查了向量的线性运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,△ABC是圆内接三角形,∠BAC的平分线交圆于点D,交BC于点F,过点B圆的切线与CD的延长线交于点E.
(1)求证;∠EBD=∠CBD.
(2)若DE=2,DC=3,求边BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=m(x-2m)(x+m+3),g(x)=3x-1-3,若?x∈R,f(x)<0或g(x)<0,则m的取值范围是(-5,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知递增的等差数列{an}的首项a1=1,且a1、a2、a4成等比数列.
(1)求数列{an}的通项公式an
(2)设{cn}对任意n∈NΦ,都有$\frac{{c}_{1}}{2}$+$\frac{{c}_{2}}{{2}^{2}}$+…+$\frac{{c}_{n}}{{2}^{n}}$=an+1成立,求c1+c2+…+c2015的值;
(3)若bn=$\frac{{a}_{n+1}}{{a}_{n}}$(n∈NΦ),求证:数列{bn}中的任意一项总可以表示成其他两项之积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知动点P与平面上两定点A(-$\sqrt{2}$,0),B($\sqrt{2}$,0)连线的斜率的积为定值-$\frac{1}{2}$.则动点P的轨迹方程C(  )
A.$\frac{{x}^{2}}{5}$$+\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{2}$+y2=1C.$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=log4(4x+1)+ax(a∈R)
(Ⅰ)若函数f(x)是定义在R上的偶函数,求a的值;
(Ⅱ)若a=0,试用定义法证明函数f(x)在R上是增函数;
(Ⅲ)若不等式f(x)+f(-x)≥mt+m对任意x∈R,t∈[-2,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.△ABC中,D为边BC上的一点,BD=33,sinB=$\frac{5}{13}$,cos∠ADC=$\frac{3}{5}$,则AD为25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.$\frac{\sqrt{3}tan15°+1}{\sqrt{3}-tan15°}$的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若椭圆$\frac{x^2}{4}+{y^2}=1$的左右焦点为F1、F2,P是椭圆上一点,当△F1PF2的面积最大时,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的值为(  )
A.0B.2C.4D.-2

查看答案和解析>>

同步练习册答案