精英家教网 > 高中数学 > 题目详情

【题目】选修4-4 坐标系与参数方程选讲

在直角坐标系中,直线的参数方程为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线极坐标方程为.

(1)求直线的普通方程以及曲线的参数方程;

(2)当时,为曲线上动点,求点到直线距离的最大值.

【答案】(1) 直线的普通方程为,曲线的参数方程(为参数) (2)

【解析】

(1)由题意,对直线的参数方程以及曲线的极坐标方程进行化简得出直线的普通方程以及曲线的参数方程;

2)设点的坐标为,根据点到直线的距离公式求得距离d,然后求得最大值.

(1)直线的普通方程为

曲线的极坐标方程可化为

化简可得.

故曲线C的参数方程(为参数)

(2)当时,直线的普通方程为.

有点的直角坐标方程,可设点的坐标为

因此点到直线的距离可表示为

.

时,取最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(其中是实数).

(1)求的单调区间;

(2)若设,且有两个极值点),求取值范围.(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知是等边三角形,平面,点为棱的中点.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有报道称,据南方科技大学、上海交大等8家单位的最新研究显示:ABOAB血型与COVID19易感性存在关联,具体调查数据统计如图:

根据以上调查数据,则下列说法错误的是(

A.与非O型血相比,O型血人群对COVID19相对不易感,风险较低

B.与非A型血相比,A型血人群对COVID19相对易感,风险较高

C.O型血相比,B型、AB型血人群对COVID19的易感性要高

D.A型血相比,非A型血人群对COVID19都不易感,没有风险

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形,如上图.现在图(3)中随机选取一个点,则此点取自阴影部分的概率为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构随机调查了两个企业各100名员工,得到了企业员工收入的频数分布表以及企业员工收入的统计图如下:

企业:

工资

人数

5

10

20

42

18

3

1

1

企业:

(1)若将频率视为概率,现从企业中随机抽取一名员工,求该员工收入不低于5000元的概率;

(2)(i)若从企业收入在员工中,按分层抽样的方式抽取7人,而后在此7人中随机抽取2人,求这2人收入在的人数的分布列.

(ii)若你是一名即将就业的大学生,根据上述调查结果,并结合统计学相关知识,你会选择去哪个企业就业,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆离心率为,以原点为圆心,以椭圆C的短半轴长为半径的圆O与直线相切.

1)求椭圆C的方程;

2)设不过原点O的直线与该椭圆交于PQ两点,满足直线OPPQOQ的斜率依次成等比数列,求OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市有四个景点,一位游客来该市游览,已知该游客游览的概率为,游览的概率都是,且该游客是否游览这四个景点相互独立.

(1)求该游客至多游览一个景点的概率;

(2)用随机变量表示该游客游览的景点的个数,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题。

(1)求甲选手能晋级的概率;

(2)若乙选手每题能答对的概率都是,且每题答对与否互不影响,用数学期望分析比较甲、乙两选手的答题水平。

查看答案和解析>>

同步练习册答案