【题目】选修4-4 坐标系与参数方程选讲
在直角坐标系中,直线的参数方程(为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线极坐标方程为.
(1)求直线的普通方程以及曲线的参数方程;
(2)当时,为曲线上动点,求点到直线距离的最大值.
科目:高中数学 来源: 题型:
【题目】有报道称,据南方科技大学、上海交大等8家单位的最新研究显示:A、B、O、AB血型与COVID﹣19易感性存在关联,具体调查数据统计如图:
根据以上调查数据,则下列说法错误的是( )
A.与非O型血相比,O型血人群对COVID﹣19相对不易感,风险较低
B.与非A型血相比,A型血人群对COVID﹣19相对易感,风险较高
C.与O型血相比,B型、AB型血人群对COVID﹣19的易感性要高
D.与A型血相比,非A型血人群对COVID﹣19都不易感,没有风险
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形,如上图.现在图(3)中随机选取一个点,则此点取自阴影部分的概率为________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究机构随机调查了,两个企业各100名员工,得到了企业员工收入的频数分布表以及企业员工收入的统计图如下:
企业:
工资 | 人数 |
5 | |
10 | |
20 | |
42 | |
18 | |
3 | |
1 | |
1 |
企业:
(1)若将频率视为概率,现从企业中随机抽取一名员工,求该员工收入不低于5000元的概率;
(2)(i)若从企业收入在员工中,按分层抽样的方式抽取7人,而后在此7人中随机抽取2人,求这2人收入在的人数的分布列.
(ii)若你是一名即将就业的大学生,根据上述调查结果,并结合统计学相关知识,你会选择去哪个企业就业,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆离心率为,以原点为圆心,以椭圆C的短半轴长为半径的圆O与直线:相切.
(1)求椭圆C的方程;
(2)设不过原点O的直线与该椭圆交于P、Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市有四个景点,一位游客来该市游览,已知该游客游览的概率为,游览、和的概率都是,且该游客是否游览这四个景点相互独立.
(1)求该游客至多游览一个景点的概率;
(2)用随机变量表示该游客游览的景点的个数,求的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题。
(1)求甲选手能晋级的概率;
(2)若乙选手每题能答对的概率都是,且每题答对与否互不影响,用数学期望分析比较甲、乙两选手的答题水平。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com