【题目】已知动点到定点的距离比到定直线的距离小1.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点和.设线段, 的中点分别为,求证:直线恒过一个定点;
(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.
【答案】(1) (2)过定点,(3)4
【解析】试题分析:(Ⅰ)先借助抛物线定义确定曲线的形状是抛物线,再确定参数,进而求出;(Ⅱ)先依据(Ⅰ)的结论分别建立的方程,再分别与抛物线联立方程组,求出弦中点为的坐标,最后借助斜率的变化确定直线经过定点;(Ⅲ)在(Ⅱ)前提条件下,先求出,然后建立面积关于变量的函数,再运用基本不等式求其最小值:
解:(Ⅰ)由题意可知:动点到定点的距离等于到定直线的距离.根据抛物线的定义可知,点的轨迹是抛物线.
∵,∴抛物线方程为:
(Ⅱ)设两点坐标分别为,则点的坐标为.
由题意可设直线的方程为.
由,得.
.
因为直线与曲线于两点,所以.
所以点的坐标为.
由题知,直线的斜率为,同理可得点的坐标为.
当时,有,此时直线的斜率.
所以,直线的方程为,整理得.
于是,直线恒过定点;
当时,直线的方程为,也过点.
综上所述,直线恒过定点.
(Ⅲ)可求得.所以面积.
当且仅当时,“ ”成立,所以面积的最小值为4.
科目:高中数学 来源: 题型:
【题目】四棱台被过点的平面截去一部分后得到如图所示的几何体,其下底面四边形是边长为2的菱形,,平面,.
(Ⅰ)求证:平面平面;
(Ⅱ)若与底面所成角的正切值为2,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是抛物线上的两个点,点的坐标为,直线的斜率为.设抛物线的焦点在直线的下方.
(Ⅰ)求k的取值范围;
(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为. 判断四边形是否为梯形,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点到定点的距离比到定直线的距离小1.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点和.设线段, 的中点分别为,求证:直线恒过一个定点;
(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为(为参数),直线与曲线相交于两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆的左、右焦点分别为离心率为,两准线之间的距离为8,点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.
(1)求椭圆的标准方程;
(2)若直线的交点在椭圆上,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆与直线相切.
(1)若直线与圆交于两点,求;
(2)设圆与轴的负半轴的交点为,过点作两条斜率分别为的直线交圆于两点,且,试证明直线恒过一定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com