精英家教网 > 高中数学 > 题目详情

【题目】如图,AB是⊙O的一条切线,切点为B,直线ADE、CFD、CGE都是⊙O的割线,已知AC=AB.

(1)若CG=1,CD=4.求 的值.
(2)求证:FG∥AC.

【答案】
(1)解:∵四边形DEGF内接于⊙O,

∴∠CGF=∠CDE,∠CFG=∠CED.

因此△CGF∽△CDE,可得 =

又∵CG=1,CD=4,

=4


(2)解:证明:∵AB与⊙O的相切于点B,ADE是⊙O的割线,

∴AB2=ADAE,

∵AB=AC,

∴AC2=ADAE,可得 =

又∵∠EAC=∠DAC,

∴△ADC∽△ACE,可得∠ADC=∠ACE,

∵四边形DEGF内接于⊙O,

∴∠ADC=∠EGF,

因此∠EGF=∠ACE,可得GF∥AC


【解析】(1)根据圆内接四边形的性质,证出∠CGF=∠CDE且∠CFG=∠CED,可得△CGF∽△CDE,因此 = =4;(2)根据切割线定理证出AB2=ADAE,所以AC2=ADAE,证出 = ,结合∠EAC=∠DAC得到△ADC∽△ACE,所以∠ADC=∠ACE.再根据圆内接四边形的性质得∠ADC=∠EGF,从而∠EGF=∠ACE,可得GF∥AC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,平行四边形ABCD中,AB=2AD,∠DAB=60°,M是BC的中点.将△ADM沿DM折起,使面ADM⊥面MBCD,N是CD的中点,图2所示.

(Ⅰ)求证:CM⊥平面ADM;
(Ⅱ)若P是棱AB上的动点,当 为何值时,二面角P﹣MC﹣B的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[﹣1.08]=﹣2,定义函数f(x)=x﹣[x],则下列命题中正确的是  

①函数f(x)的最大值为1; ②函数f(x)的最小值为0;

③方程有无数个根; ④函数f(x)是增函数.

A. ②③ B. ①②③ C. D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域为(-3,3),

满足f(-x)=-f(x),且对任意xy,都有f(x)-f(y)=f(xy),当x<0时,f(x)>0,f(1)=-2.

(1)求f(2)的值;

(2)判断f(x)的单调性,并证明;

(3)若函数g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在下列四个正方体中,为正方体的两个顶点,为所在棱的中点,则在这四个正方体中,直接与平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足对任意,都有成立,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,且anan+1=2n , n∈N* , 则数列{an}的通项公式为(
A.an=( n1
B.an=( n
C.an=
D.an=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE= BB1 , C1F= CC1

(1)求平面AEF与平面ABC所成角α的余弦值;
(2)若G为BC的中点,A1G与平面AEF交于H,且设 = ,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公差不为0的等差数列中,已知,其前项和的最大值为( )

A. 25 B. 26 C. 27 D. 28

【答案】B

【解析】设等差数列的公差为,

整理得

∴当时,

最大,且.选B.

点睛:求等差数列前n项和最值的常用方法:

①利用等差数列的单调性, 求出其正负转折项便可求得和的最值;

将等差数列的前n项和 (A、B为常数)看作关于n的二次函数,根据二次函数的性质求最值.

型】单选题
束】
9

【题目】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )

A. B. C. 90 D. 81

查看答案和解析>>

同步练习册答案