精英家教网 > 高中数学 > 题目详情
已知数列{an}满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,则log3(a5+a7+a9)的值是(  )
A、-5
B、-
1
5
C、5
D、
1
5
分析:先由“log3an+1=log3an+1”探讨数列,得到数列是以3为公比的等比数列,再由a2+a4+a6=a2(1+q2+q4),a5+a7+a9=a5(1+q2+q4)得到a5+a7+a9=q3(a2+a4+a6)求解.
解答:解:∵log3an+1=log3an+1
∴an+1=3an
∴数列{an}是以3为公比的等比数列,
∴a2+a4+a6=a2(1+q2+q4)=9
∴a5+a7+a9=a5(1+q2+q4)=a2q3(1+q2+q4)=9×33=35
log
1
3
(a5+a7+a9)=
log
35
1
3
=-5

故选A
点评:本题主要考查等比数列的定义,通项及其性质,在等比数列中用“首项与公比”法是常用方法,往往考查到方程思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案