精英家教网 > 高中数学 > 题目详情
已知函数
(1)若f(x)在x=2时取得极值,求a的值;
(2)求f(x)的单调区间;
(3)求证:当x>1时,
【答案】分析:(1)若(x)在x=2时取得极值,则f′(2)=0,根据已知中函数的解析式,求出导函数的解析式,代入即可构造关于a的方程,解方程即可得到答案.
(2)由已知中函数的解析式,求出导函数的解析式,然后分类讨论a在不同取值时,导函数在不同区间上的符号,即可确定f(x)的单调区间;
(3)构造函数g(x)=,利用导数法判断其在定义上的单调性后,易得g(x)>0恒成立,进而得到结论.
解答:解:(1)∵

又∵f(x)在x=2时取得极值,
,解得a=4
(2)∵,(x>0)
当a<0时,又由x>0,易得f′(x)>0,f(x)为增函数,
故当a<0时,(0,+∞)为函数的单调递增区间;
当a=0,f(x)=x2,当x∈[0,+∞)时,f′(x)≥0,f(x)为增函数,
故当a=0时,[0,+∞)为函数的单调递增区间;
当a>0时,当x∈(0,)时,f′(x)<0,f(x)为减函数,
当x∈(,+∞)时,f′(x)>0,f(x)为增函数,
故当a<0时,(0,)为函数的单调递减区间,(,+∞)为函数的单调递增区间;
(3)令g(x)=
则g′(x)===
∵当x>1时,g′(x)>0
故在(1,+∞)上,g(x)=为增函数
即当x>1时,g(x)>g(1)=>0
故当x>1时,
点评:本题考查的知识点是函数在某点取得极值的条件,利用导数研究函数的单调性,导数在最大值、最小值问题中的应用,其中根据已知中函数的解析式,求出导函数的解析式,进而确定导函数的符号是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年广东省湛江师范附中高三(上)第一周周考数学试卷(理科)(9.9)(解析版) 题型:解答题

已知函数
(1)若f(x)为奇函数,求a的值;
(2)若f(x)在[3,+∞)上恒大于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江师范附中高三(上)第一周周考数学试卷(理科)(9.9)(解析版) 题型:解答题

已知函数
(1)若f(x)为奇函数,求a的值;
(2)若f(x)在[3,+∞)上恒大于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2007年江苏省连云港市东海高级中学高考数学仿真试卷(解析版) 题型:解答题

已知函数
(1)若f-1(mx2+mx+1)的定义域为R,求实数m的取值范围;
(2)当x∈[-1,1]时,求函数y=f2(x)-2af(x)+3的最小值g(a).
(3)是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2],若存在,求出m、n的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三9月月考文科数学试卷 题型:解答题

(13分)已知函数

(1)若f(x)关于原点对称,求a的值;

(2)在(1)下,解关于x的不等式

 

查看答案和解析>>

同步练习册答案