精英家教网 > 高中数学 > 题目详情
17.在空间直角坐标系中,已知A(1,0,0),B(4,-3,0),且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,则点P的坐标是(3,-2,0).

分析 设出点P的坐标,用坐标表示出$\overrightarrow{AP}$与$\overrightarrow{PB}$,根据$\overrightarrow{AP}$=2$\overrightarrow{PB}$列出方程组,求出点P的坐标.

解答 解:设点P(x,y,z),又点A(1,0,0),B(4,-3,0),
∴$\overrightarrow{AP}$=(x-1,y,z),
$\overrightarrow{PB}$=(4-x,-3-y,-z);
又$\overrightarrow{AP}$=2$\overrightarrow{PB}$,
∴$\left\{\begin{array}{l}{x-1=2(4-x)}\\{y=2(-3-y)}\\{z=-2z}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=3}\\{y=-2}\\{z=0}\end{array}\right.$,
∴点P的坐标是(3,-2,0).
故答案为:(3,-2,0).

点评 本题考查了空间向量的坐标表示与应用问题,也考查了方程组的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和Sn=a(bn-1)(a≠0,b≠0且b≠1),证明:{an}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sinx=$\frac{4}{5}$,其中0≤x≤$\frac{π}{2}$.
(1)求cosx的值;
(2)求$\frac{cos(-x)}{sin(\frac{π}{2}-x)-sin(2π-x)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知loga2=m,loga3=n,则a2m+n=(  )
A.6B.7C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某同学用五点法画函数$f(x)=Asin(ωx+φ),(ω>0,|φ|<\frac{π}{2})$在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)03-30
(Ⅰ)请将表数据补充完整,并直接写出函数f(x)的解析式;
(Ⅱ)若函数f(x)的单调递增区间;
(Ⅲ)求f(x)在区间$[-\frac{π}{4}\;,\;\frac{π}{6}]$上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,若此椭圆上存在不同的两点A,B关于直线y=4x+m对称,则实数m的取值范围是(  )
A.(-$\frac{2\sqrt{13}}{13}$,$\frac{2\sqrt{2}}{13}$)B.(-$\frac{2\sqrt{13}}{13}$,$\frac{2\sqrt{13}}{13}$)C.(-$\frac{\sqrt{2}}{13}$,$\frac{2\sqrt{13}}{13}$)D.(-$\frac{2\sqrt{3}}{13}$,$\frac{2\sqrt{3}}{13}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{2x+y-4≤0}\end{array}\right.$,若目标函数z=ax+y取得最大值时的最优解不唯一,则实数a的值为

(  )
A.-1B.2C.-1或 2D.1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a1=1,且4an+2an+1-9anan+1=1(n∈N*
(1)求a2,a3,a4
(2)由此猜想{an}的通项公式,并用数学归纳法给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.抛物线C:y2=4x上到直线l:y=x距离为$\frac{\sqrt{2}}{2}$的点的个数为3.

查看答案和解析>>

同步练习册答案