分析 由已知得|$\overrightarrow{AC}$|=$\sqrt{10}$,|$\overrightarrow{BD}$|=3$\sqrt{10}$,$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,由此能求出四边形ABCD的面积.
解答 解:∵在平面四边形ABCD中,
∵$\overrightarrow{AC}=({1,3}),\overrightarrow{BD}=({9,-3})$,
∴$\overrightarrow{AC}•\overrightarrow{BD}$=9-9=0,且|$\overrightarrow{AC}$|=$\sqrt{1+9}=\sqrt{10}$,|$\overrightarrow{BD}$|=$\sqrt{81+9}$=3$\sqrt{10}$,
∴$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,
∴四边形ABCD的面积为S=$\frac{1}{2}×\sqrt{10}×3\sqrt{10}$=15.
故答案为:15.
点评 本题考查四边形面积的求法,是基础题,解题时要认真审题,注意平面向量性质及运算法则的合理运用.
科目:高中数学 来源: 题型:选择题
A. | $\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{14}$=1 | B. | $\frac{{x}^{2}}{17}$+$\frac{{y}^{2}}{16}$=1 | C. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1 | D. | $\frac{{x}^{2}}{14}$+$\frac{{y}^{2}}{13}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | p∨q | B. | p∧q | C. | ¬p∧q | D. | p∨¬q |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {0,1} | B. | {-1,0} | C. | {-1,0,1} | D. | {0,1,2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com