精英家教网 > 高中数学 > 题目详情
18.在平面四边形ABCD中,已知$\overrightarrow{AC}=({1,3}),\overrightarrow{BD}=({9,-3})$,则四边形ABCD的面积为15.

分析 由已知得|$\overrightarrow{AC}$|=$\sqrt{10}$,|$\overrightarrow{BD}$|=3$\sqrt{10}$,$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,由此能求出四边形ABCD的面积.

解答 解:∵在平面四边形ABCD中,
∵$\overrightarrow{AC}=({1,3}),\overrightarrow{BD}=({9,-3})$,
∴$\overrightarrow{AC}•\overrightarrow{BD}$=9-9=0,且|$\overrightarrow{AC}$|=$\sqrt{1+9}=\sqrt{10}$,|$\overrightarrow{BD}$|=$\sqrt{81+9}$=3$\sqrt{10}$,
∴$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,
∴四边形ABCD的面积为S=$\frac{1}{2}×\sqrt{10}×3\sqrt{10}$=15.
故答案为:15.

点评 本题考查四边形面积的求法,是基础题,解题时要认真审题,注意平面向量性质及运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.己知圆M (x+1)2+y2=64,定点N(1,0),点P为圆M上的动点,点Q在NP上,点G在线段MP上,且满足$\overrightarrow{NP}$=2$\overrightarrow{NQ}$,$\overrightarrow{GQ}$•$\overrightarrow{NP}$=0,则点G的轨迹方程是(  )
A.$\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{14}$=1B.$\frac{{x}^{2}}{17}$+$\frac{{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1D.$\frac{{x}^{2}}{14}$+$\frac{{y}^{2}}{13}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:函数y=3-ax+1的图象恒过定点(1,3);命题q:若函数y=f(x-3)为偶函数,则函数y=f(x)的图象关于直线x=3对称,则下列命题为真命题的是(  )
A.p∨qB.p∧qC.¬p∧qD.p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在复平面内,复数z的对应点为(1,1),则z2=(  )
A.$\sqrt{2}$B.2iC.$-\sqrt{2}$D..2+2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线$l:x=\frac{a^2}{c}$是椭圆$Γ:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0,c=\sqrt{{a^2}-{b^2}}})$的右准线,若椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,右准线方程为x=2.
(1)求椭圆Γ的方程;
(2)已知一直线AB过右焦点F(c,0),交椭圆Γ于A,B两点,P为椭圆Γ的左顶点,PA,PB与右准线交于点M(xM,yM),N(xN,yN),问yM•yN是否为定值,若是,求出该定值,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线E:y2=2px(P>0)的准线为x=-1,M,N为直线x=-2上的两点,M,N两点的纵坐标之积为-8,P为抛物线上一动点,PN,PM,分别交抛物线于A,B两点.
(1)求抛物线E的方程;
(2))问直线AB是否过定点,若过定点,请求出此定点;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述的已知条件,可求得该女子前3天所织布的总尺数为$\frac{35}{31}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={-2,-1,0,1,2},B={x|x>-1},则A∩B=(  )
A.{0,1}B.{-1,0}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.三棱锥的四个面中,下列说法不正确的是(  )
A.不能都是直角三角形B.不能都是锐角三角形
C.不能都是等腰三角形D.可能都是钝角三角形

查看答案和解析>>

同步练习册答案