精英家教网 > 高中数学 > 题目详情
19.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足$\frac{cosA}{cosB}=-\frac{a}{b+2c}$.
(1)求角A的大小;
(2)求sinBsinC的最大值.

分析 (1)由正弦定理化简已知等式可得$\frac{cosA}{cosB}=-\frac{sinA}{sinB+2sinC}$,解得cosA=-$\frac{1}{2}$,根据A的范围即可解得A的值.
(2)由(1)及三角函数恒等变换的应用可得sinBsinC=$\frac{1}{2}$sin(2B+$\frac{π}{6}$)-$\frac{1}{4}$,由范围0$<B<\frac{π}{3}$,可得$\frac{π}{6}<$2B+$\frac{π}{6}$$<\frac{5π}{6}$,利用正弦函数的图象和性质即可解得sinBsinC的最大值.

解答 解:(1)由$\frac{cosA}{cosB}=-\frac{a}{b+2c}$.得$\frac{cosA}{cosB}=-\frac{sinA}{sinB+2sinC}$,
∴2cosAsinC=-sin(A+B)=-sinC
∴cosA=-$\frac{1}{2}$,
∴由A为三角形内角,可得:A=$\frac{2π}{3}$.
(2)∵sinBsinC=sinBsin($\frac{π}{3}-B$)=$\frac{1}{2}$sin(2B+$\frac{π}{6}$)-$\frac{1}{4}$,
∵0$<B<\frac{π}{3}$,$\frac{π}{6}<$2B+$\frac{π}{6}$$<\frac{5π}{6}$,
∴当sin(2B+$\frac{π}{6}$)=1即B=$\frac{π}{6}$时,sinBsinC取得最大值$\frac{1}{4}$.

点评 本题主要考查了正弦定理,正弦函数的图象和性质以及三角函数恒等变换的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,某炮兵阵地位于A点,两观察所分别位于C,D两点.已知△ACD为正三角形,且DC=$\sqrt{3}$ km,当目标出现在B点时,测得∠BCD=75°,∠CDB=45°,求炮兵阵地与目标的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知y=f(x+1)是R上的偶函数,且f(2)=1,则f(0)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列命题中,
①有两个面互相平行,其余各个面都是平行四边形的多面体是棱柱
②四棱锥的四个侧面都可以是直角三角形
③有两个面互相平行,其余各面都是梯形的多面体是棱台
④以直角三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.
其中错误的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.不用计算器求下列各式的值:
(1)0.027${\;}^{-\frac{1}{3}}$+($\sqrt{8}$)${\;}^{\frac{4}{3}}$-3-1+($\sqrt{2}$-1)0
(2)log3(9×272)+log26-log23+log43×log3 16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)满足f($\frac{x+1}{x-1}$)=x2+3,则f(0)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在等差数列{an}中,已知a2+a20=10,则S21等于(  )
A.0B.100C.105D.200

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数的定义域是$y=(x-1)^{0}+\sqrt{lo{g}_{\frac{2}{3}}(3x-2)}$(  )
A.[$\frac{2}{3},1$]B.($\frac{2}{3},1$]C.[$\frac{2}{3},1$)D.($\frac{2}{3},1$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算以下式子的值:
(1)$\root{3}{(-4)^{3}}-(\frac{1}{2})^{0}+0.2{5}^{\frac{1}{2}}×(\frac{-1}{\sqrt{2}})^{-4}$;
(2)$log{\;}_381+lg20+lg5+{4^{log{\;}_42}}+log{\;}_51$.

查看答案和解析>>

同步练习册答案