精英家教网 > 高中数学 > 题目详情
6.将十进制数217转化为二进制数11011001(2)

分析 利用“除k取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案.

解答 解:
所以十进制数217(10)化为二进制数是11011001(2)
故答案为:11011001(2)

点评 本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax-lnax+x2(a>0,a≠1)
(Ⅰ)求函数f(x)在点(0,f(0))处的切线方程
(Ⅱ)求函数f(x)单调递增区间
(Ⅲ)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然对数的底数),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.复数(1+2i)i的虚部为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.(a+bi)(a-bi)(-a+bi)(-a-bi)等于(  )
A.(a2+b22B.(a2-b22C.a2+b2D.a2-b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=\left\{\begin{array}{l}{x^2}-2x,x≤0\\ \frac{{\sqrt{x}}}{e^x},x>0\end{array}\right.$,若关于x的方程f(x)-a+1=0恰有3个不同的实数根,则实数a的取值范围为(  )
A.$(1,\frac{{\sqrt{2e}}}{2e}+1)$B.$(1,\frac{1}{e}+1)$C.$(0,\frac{1}{2e}+1)$D.$(\frac{1}{e},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知总体中各个体的值由小到大依次为2,3,3,7,a,b,12,15,18,20(a,b∈N*),且总体的中位数为10,若要使该总体的方差最小,则a,b的取值分别是(  )
A.9,11B.10,10C.8,10D.10,11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,在正方体ABCD-A1B1C1D1中,AB=3$\sqrt{3}$,点E,F在线段DB1上,且DE=EF=FB1,点M是正方体表面上的一动点,点P,Q是空间两动点,若$\frac{|PE|}{|PF|}$=$\frac{|QE|}{|QF|}$=2且|PQ|=4,则$\overrightarrow{MP}$•$\overrightarrow{MQ}$的最小值为-$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=$\frac{1}{2}$(x-1)2+a的定义域和值域都是[1,b](b>1),则a+b的值等于(  )
A.-2B.2C.4D.2或4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥A-OBCD中,已知平面AOC⊥面OBCD,AO=2$\sqrt{3}$,OB=BC=2,CD=4,∠OBC=∠BCD=120°.
(I)求证:平面ACD⊥平面AOC;
(II)直线AO与平面OBCD所成角为60°,求二面角A-BC-D的平面角的正切值.

查看答案和解析>>

同步练习册答案