精英家教网 > 高中数学 > 题目详情
2.若用m,n表示两条不同的直线,用α表示一个平面,则下列命题正确的是(  )
A.若m∥n,n?α,则m∥αB.若m∥α,n?α,则m∥nC.若m∥α,n∥α,则m∥nD.若m⊥α,n⊥α,则m∥n

分析 在A中,m∥α或m?α;在B中,m与n平行或异面;在C中,m与n相交、平行或异面;在D中,由直线与平面垂直的性质得m∥n.

解答 解:由m,n表示两条不同的直线,用α表示一个平面,知:
若m∥n,n?α,则m∥α或m?α,故A错误;
若m∥α,n?α,则m与n平行或异面,故B错误;
若m∥α,n∥α,则m与n相交、平行或异面,故C错误;
若m⊥α,n⊥α,则由直线与平面垂直的性质得m∥n,故D正确.
故选:D.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.执行如图所示的程序框图,若输入n的值为5,则输出的s的值为11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)为R上的可导函数,对任意的x0∈R,有0<f′(x+x0)-f′(x0)<4x,x>0.
(1)对任意的x0∈R,证明:$f'({x_0})<\frac{{f({x+{x_0}})-f({x_0})}}{x}$(x>0);
(2)若|f(x)|≤1,x∈R,证明|f′(x)|≤4,x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,
(1)当x∈[1,2]时,求f(x)的解析式;
(2)计算f(0)+f(1)+f(2)+…+f(2015)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x2+2cosx,x∈R,若$f({log_{\frac{1}{3}}}a)+f({log_3}a)≤2f(1)$,则实数a的取值范围为[$\frac{1}{3}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的三个内角A,B,C的对边分别为a,b,c,且a=$\sqrt{3}$csinA-acosC.
(1)求角C;
(2)若c=2,△ABC的面积为$\sqrt{3}$,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC的面积为$\frac{{a}^{2}-(b-c)^{2}}{4}$,则sinA+cosA=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知某等差数列共20项,其所有项和为75,偶数项和25,则公差为(  )
A.5B.-5C.-2.5D.2.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设各项均为正数的等差数列{an}的首项为1,其前n项和为Sn,且Sn=$\frac{({a}_{n}+1)^{2}}{4}$(n∈N*).
(1)求an
(2)设常数k满足k<$\frac{\sqrt{{S}_{m}}+2\sqrt{{S}_{n}}}{\sqrt{{S}_{m+n}}}$对一切的m,n∈N*,m<n恒成立,求证:k的最大值等于$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案