精英家教网 > 高中数学 > 题目详情
设函数f(x)=|x-3|-|x+1|,x∈R.
(Ⅰ)解不等式f(x)<-1;
(Ⅱ)设函数g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求实数a的取值范围.
考点:绝对值不等式的解法,绝对值不等式
专题:不等式的解法及应用
分析:(Ⅰ根据函数f(x)=
4 ,x<-1
2-2x ,-1≤x≤3
-4  ,x>3
,故由不等式可得 x>3 或
2-2x<-1
-1≤x≤3
,从而求得不等式的解集.
(Ⅱ)由题意可得当x∈[-2,2]上时,函数g(x)应在函数f(x)的图象的下方,在同一个坐标系中画出函数y=f(x)和y=g(x)的图象,数形结合求得-4≤a≤0,由此求得实数a的取值范围.
解答: 解:(Ⅰ)∵函数f(x)=|x-3|-|x+1|=
4 ,x<-1
2-2x ,-1≤x≤3
-4  ,x>3

故由不等式f(x)<-1可得 x>3 或 
2-2x<-1
-1≤x≤3

解得 x>
3
2

(Ⅱ)∵函数g(x)=|x+a|-4,且g(x)≤f(x)在
x∈[-2,2]上恒成立,
∴|x+a|-4≤|x-3|-|x+1|在x∈[-2,2]上恒成立,
在同一个坐标系中画出函数y=f(x)和y=g(x)的图象,如图所示:
故当x∈[-2,2]时,若0≤-a≤4时,
则函数g(x)在函数f(x)的图象的下方,g(x)≤f(x)在x∈[-2,2]上恒成立,
求得-4≤a≤0,故所求的实数a的取值范围为[-4,0].
点评:本题主要考查带由绝对值的函数,绝对值不等式的解法,函数的恒成立问题,体现了转化以及数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有一块铁皮零件,它的形状是由边长为40cm的正方形CDEF截去一个三角形ABF所得的五边形ABCDE,其中AF长等于12cm,BF长等于10cm,如图所示.现在需要截取矩形铁皮,使得矩形相邻两边在CD,DE上.请问如何截取,可以使得到的矩形面积最大?(图中单位:cm)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则y=f(x)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2
3x
+m
是奇函数,则实数m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,是函数y=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的图象的一段,O坐标原点,P(3,1)是该段图象的最高点,A(5,0)是该段图象与x轴的一个交点,则此函数的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知可行域为△ABC及其内部,若目标函数z=kx+y当且仅当在点B处取得最大值,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=
1
2
+
1
6
+
1
12
+…+
1
n(n+1)
, 且 SnSn+1=
3
4
,则n的值为(  )
A、9B、8C、7D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线标准方程为
y2
2
-x2=1,则双曲线离心率为(  )
A、
2
B、3
C、
6
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组得到的频率分布表如下:
组号 分组 频数 频率
第一组 [160,165) 5 0.050
第二组 [165,170) a 0.350
第三组 [170,175) 30 b
第四组 [175,180) c 0.200
第五组 [180,185] 10 0.100
合计 100 1.00
(1)为了能选拔出优秀的学生,高校决定在笔试成绩高的第三、四、五组中用分层抽样法抽取6名学生进入第二轮面试,试确定a,b,c的值并求第三、四、五组每组各抽取多少名学生进入第二轮面试;
(2)在(1)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组中至少有一名学生被A考官面试的概率.

查看答案和解析>>

同步练习册答案