精英家教网 > 高中数学 > 题目详情
5.已知球的表面积为1680cm2,求与球心的距离为9cm的截面的面积.

分析 利用球的表面积为1680cm2,求出球的半径,可得与球心的距离为9cm的截面圆的半径,即可求与球心的距离为9cm的截面的面积.

解答 解:∵球的表面积为1680cm2
∴4πR2=1680,
∴R2=$\frac{420}{π}$,
设与球心的距离为9cm的截面圆的半径为r,则r2=R2-81=$\frac{420}{π}$-81,
∴截面的面积为(420-81π)cm2

点评 本题考查球的表面积,考查勾股定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}满足a3+a9=2,则a6=(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图点P在平面区域$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-2y+1≤0}\\{x+y-2≤0}\end{array}\right.$上,点Q在曲线x2+(y+$\frac{3}{2}$)2=1上,那么|PQ|的最小值为(  )
A.$\sqrt{5}$-1B.$\frac{4}{\sqrt{5}}$-1C.2$\sqrt{2}$-1D.$\frac{\sqrt{13}}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列叙述正确的有①④(将你认为所有可能出现的情况的代号填入横线上).
①集合{0,1,2}的非空真子集有6个;
②集合A={1,2,3,4,5,6},集合B={y|y≤5,y∈N*},若f:x→y=|x-1|,则对应关系f是从集合A到集合B的映射;
③函数y=tanx的对称中心为(kπ,0)(k∈Z);
④函数f(x)对任意实数x都有f(x)=-$\frac{1}{f(x-2)}$恒成立,则函数f(x)是周期为4的周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知sin200°=a,则tan160°等于(  )
A.-$\frac{a}{\sqrt{1-{a}^{2}}}$B.$\frac{a}{\sqrt{1-{a}^{2}}}$C.-$\frac{\sqrt{1-{a}^{2}}}{a}$D.$\frac{\sqrt{1-{a}^{2}}}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}为等差数列,且a2=-1,a5=8.求
(1)求数列{an}的通项公式;
(2)求数列{2n•an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+1,}&{x>0}\\{a,}&{x=0}\\{g(2x),}&{x<0}\end{array}\right.$为奇函数,则a=0,f(g(-2))=-25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知奇函数f(x)满足f(x+2)=f(x),当x∈[0,1]时.,f(x)=x,则当x∈[k,k+1](k∈Z)时,函数f(x)的解析式是f(x)=$\left\{\begin{array}{l}{x-k,k是偶数}\\{x-k-1,k是奇数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线y=xex+1在点(0,1)处的切线方程是(  )
A.x-y+1=0B.2x-y+1=0C.x-y-1=0D.x-2y+2=0

查看答案和解析>>

同步练习册答案