精英家教网 > 高中数学 > 题目详情

如图,在三棱锥中,,点分别是的中点,底面

(1)求证:平面

(2)当时,求直线与平面所成角的大小;

(3)当为何值时,在平面内的射影恰好为的重心?

(1)证明见解析(2)与平面所成的角为.(3)当时,三棱锥为正三棱锥.在平面内的射影为的重心.


解析:

(1)证明:平面

为原点,建立如图所示空间直角坐标系

,则

,则

的中点,

平面

(2),即

可求得平面的法向量

与平面所成的角为

与平面所成的角为

(3)的重心

平面

,即

反之,当时,三棱锥为正三棱锥.

在平面内的射影为的重心.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱锥中,

(Ⅰ)求证

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:2013届广西玉林市高二下学期三月月考文科数学试卷(解析版) 题型:解答题

如图,在三棱锥中,侧面与侧面均为等边三角形,中点.

 (Ⅰ)证明:平面

(Ⅱ)求二面角的余弦值.    (本题12分)

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省台州市高三上学期期末理科数学试卷 题型:解答题

如图,在三棱锥中, 两两垂直且相等,过的中点作平面,且分别交,交的延长线于

(Ⅰ)求证:平面

(Ⅱ)若,求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011---2012学年四川省高二10月考数学试卷 题型:解答题

如图:在三棱锥中,已知点分别为棱的中点.

(Ⅰ)求证:∥平面

(Ⅱ)若,求证:平面⊥平面.

 

 

 

查看答案和解析>>

科目:高中数学 来源:黑龙江省2013届高一下学期期末考试数学(理) 题型:解答题

如图,在三棱锥中,中点。(1)求证:平面

(2)在线段上是否存在一点,使二面角的平面角的余弦值为?若存在,确定点位置;若不存在,说明理由。

 

查看答案和解析>>

同步练习册答案