【题目】设A,B两点的坐标分别为(﹣1,0),(1,0).条件甲:A、B、C三点构成以∠C为钝角的三角形;条件乙:点C的坐标是方程x2+2y2=1(y≠0)的解,则甲是乙的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件
科目:高中数学 来源: 题型:
【题目】已知二次函数的值域为.
(1)判断此函数的奇偶性,并说明理由;
(2)判断此函数在的单调性,并用单调性的定义证明你的结论;
(3)求出在上的最小值,并求的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司新研发了一款手机应用APP,投入市场三个月后,公司对部分用户做了调研:抽取了400位使用者,每人填写一份综合评分表(满分为100分).现从400份评分表中,随机抽取40份(其中男、女使用者的评分表各20份)作为样本,经统计得到如下的茎叶图:
女性使用者评分 | 男性使用者评分 | |
7 | 6 | 7 8 9 9 |
1 2 5 | 7 | 0 2 2 3 4 5 6 6 7 8 9 |
0 3 3 3 4 4 5 6 6 8 | 8 | 2 4 4 9 |
0 0 1 2 2 2 | 9 | 2 |
记该样本的中位数为,按评分情况将使用者对该APP的态度分为三种类型:评分不小于的称为“满意型”,评分不大于的称为“不满意型”,其余的都称为“须改进型”.
(1)求的值,并估计这400名使用者中“须改进型”使用者的个数;
(2)为了改进服务,公司对“不满意型”使用者进行了回访,根据回访意见改进后,再从“不满意型”使用者中随机抽取3人进行第二次调查,记这3人中的女性使用者人数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,一座小岛距离海岸线上最近的P点的距离是2km,从P点沿海岸正东12km处有一个城镇.假设一个人驾驶的小船的平均速度为,步行的速度为,时间t(单位:h)表示他从小岛到城镇的时间,x(单位:km)表示此人将船停在海岸处距P点的距离.设,则( )
A.函数为减函数B.
C.当时,此人从小岛到城镇花费的时间最少D.当时,此人从小岛到城镇花费的时间不超过3h
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数的定义域为,若存在非零实数满足对任意,均有,且,则称为上的高调函数. 如果定义域为的函数是奇函数,当时,,且为上的8高调函数,那么实数的取值范围为____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com