已知四棱锥,面,∥,,,,,为上一点,是平面与的交点.
(1)求证:∥;
(2)求证:面;
(3)求与面所成角的正弦值.
(1)、(2)证明详见解析;(3).
解析试题分析:(1)首先根据∥,可证明∥面,再利用线面平行的关系可证明∥;(2)考虑通过证明与(已知),而证明可通过证明面来证明;(3)考虑以DA,DC,DP为坐标建立空间直角坐标,通过求直线PC的方向向量与平面EFCD的法向量的夹角来处理.
试题解析:(1)∥ ,面,面,∴∥面,
又∵面面,
∴∥,∴∥.
(2)∵面,∴.
又,∴面,
∵面,∴.
又∵,∴面 .
(3)以为原点,分别为轴建立空间直角坐标系,
,
设由且∥可得
,解得,∴.
设为平面的一个法向量则有
,令,,∴ ,
∴与面所成角的正弦值为 .
考点:1、空间直线、平面间的平行与垂直;2、直线与平面所成角;3、空间向量的应用.
科目:高中数学 来源: 题型:解答题
如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,,是锐角,且平面ACEF⊥平面ABCD.
(1)求证:;
(2)试判断直线DF与平面BCE的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动
(Ⅰ)求三棱锥E-PAD的体积;
(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,底面是边长为的正方形, ,且点满足 .
(1)证明:平面 .
(2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在四棱锥P-ABCD中,PA⊥平面ABCD,AD⊥AB,△ABC是正三角形,AC与BD的交点M恰好是AC中点,N为线段PB的中点,G在线段BM上,且
(Ⅰ)求证:AB⊥PD;
(Ⅱ)求证:GN//平面PCD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com