精英家教网 > 高中数学 > 题目详情

已知四棱锥,,,,,上一点,是平面的交点.

(1)求证:
(2)求证:
(3)求与面所成角的正弦值.

(1)、(2)证明详见解析;(3)

解析试题分析:(1)首先根据,可证明∥面,再利用线面平行的关系可证明;(2)考虑通过证明(已知),而证明可通过证明来证明;(3)考虑以DA,DC,DP为坐标建立空间直角坐标,通过求直线PC的方向向量与平面EFCD的法向量的夹角来处理.
试题解析:(1) ,,,∴∥面
又∵面
,∴
(2)∵,∴
,∴
,∴
又∵,∴ .
(3)以为原点,分别为轴建立空间直角坐标系,
,
可得
,解得,∴
为平面的一个法向量则有
,令,∴ ,

与面所成角的正弦值为 .
考点:1、空间直线、平面间的平行与垂直;2、直线与平面所成角;3、空间向量的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,是锐角,且平面ACEF⊥平面ABCD.

(1)求证:
(2)试判断直线DF与平面BCE的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱中,,,求:

(1)异面直线所成角的大小;
(2)直线到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体中,,点是棱上的一个动点.

(1)证明:
(2)当的中点时,求点到面的距离;
(3)线段的长为何值时,二面角的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动

(Ⅰ)求三棱锥E-PAD的体积;
(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四边形均为正方形,平面平面.

(1)求证:平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,矩形中,,且交于点.

(Ⅰ)求证:
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的正方形, ,且点满足 .

(1)证明:平面 .
(2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥P-ABCD中,PA⊥平面ABCD,AD⊥AB,△ABC是正三角形,AC与BD的交点M恰好是AC中点,N为线段PB的中点,G在线段BM上,且

(Ⅰ)求证:AB⊥PD;
(Ⅱ)求证:GN//平面PCD.

查看答案和解析>>

同步练习册答案