精英家教网 > 高中数学 > 题目详情
15.已知△ABC各角的对应边分别为a,b,c,且满足$\frac{b}{a+c}$+$\frac{c}{a+b}$≥1,则角A的取值范围是(0,$\frac{π}{3}$].

分析 将已知不等式化简整理,再由余弦定理,可得cosA≥$\frac{1}{2}$(0<A<π),再由余弦函数的单调性,即可得到A的范围.

解答 解:由$\frac{b}{a+c}$+$\frac{c}{a+b}$≥1,
可得,b(a+b)+c(a+c)≥(a+c)(a+b),
即b2+c2-a2≥bc,将不等式两边同除以2bc,
可得$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$≥$\frac{1}{2}$,
由余弦定理可得,cosA≥$\frac{1}{2}$(0<A<π)
所以0<A≤$\frac{π}{3}$.
故答案为:(0,$\frac{π}{3}$].

点评 本题考查余弦定理的运用,考查化简整理的能力,以及余弦函数的单调性的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.目前我国很多城市出现了雾霾天气,已经给广大人民的健康带来影响,其中汽车尾气排放是造成雾霾天气的重要因素之一,很多城市提倡绿色出行方式,实施机动车尾号限行.某市为了解民众对“车辆限行”的态度,随机调查了50人,并半调查结果制成如表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数469634
(1)若从年龄在[15,25)、[25,35)的被调查者中随机选取2人进行跟踪调查,记选中的4人中不赞成“车辆限行”的人数记为X,求X的分布列和期望;
(2)把年龄在[15,45)称为中青年,年龄在[45,75)称为中老年,请根据上表完成2×2列联表,并说明民众对“车辆限行”的态度与年龄是否有关联.
态度
年龄
赞成不赞成总计
中青年
中老年
总计
参考公式和数据:x2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$
X2≤2.706>2.706>3.841>6.635
A、B关联性无关联90%95%99%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为了解沈阳市高三学生某次模拟考试的数学成绩的某项指标,从所有成绩在及格线以上(90及90分以上)的考生中抽取一部分考生对其成绩进行统计,将成绩按如下方式分成六组,第一组[90,100)、第二组[100,110)…第六组[140,150].如图为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人.
(Ⅰ)请将频率分布直方图补充完整,并估计这组数据的平均数M;
(Ⅱ)现根据初赛成绩从第四组和第六组中任意选2人,记他们的成绩分别为x,y.若|x-y|≥10,则称此二
人为“黄金帮扶组”,试求选出的二人为“黄金帮扶组”的概率P1
(Ⅲ)用这部分考生成绩分布的频率估计全市考生的成绩分布,并从全市考生中随机抽取三名考生,求成绩不低于120分的人数ξ分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知是A,B是直二面角α-l-β的棱上两点,线段AC?α,线段BD?β,且AC⊥l,BD⊥l,AC=AB=6,BD=6$\sqrt{2}$,求线段CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知不等式组$\left\{\begin{array}{l}{lnm-lnn≥0}\\{23-mn≥0}\end{array}\right.$对任意正整数n恒成立,则实数m的取值范围是[4,23].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知随机变量X服从正态分布N(2,σ2),P(X≤3)=0.72,则P(1<X<3)等于(  )
A.0.28B.0.44C.0.56D.0.84

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a,b,c均为正数,且a+b+c=3,求证:$\frac{{b}^{2}}{a}$+$\frac{{c}^{2}}{b}$+$\frac{{a}^{2}}{c}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}为等差数列,若a3+a7=20,则数列{an}的前9项和S9等于(  )
A.40B.45C.60D.90

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图已知:菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,∠ABE=60°,∠BAD=∠CDA=90°,点H,G分别是线段EF,BC的中点.
(1)求证:平面AHC⊥平面BCE;
(2)试问在线段EF上是否存在点M,使得MG∥平面AFD,若存在求FM的长并证明,若不存在,说明理由.

查看答案和解析>>

同步练习册答案