精英家教网 > 高中数学 > 题目详情

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):

常喝

不常喝

合计

肥胖

2

不肥胖

18

合计

30

已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

【答案】
(1)解:设常喝碳酸饮料肥胖的学生有x人,

常喝

不常喝

合计

肥胖

6

2

8

不胖

4

18

22

合计

10

20

30


(2)解:由已知数据可求得:

因此有99.5%的把握认为肥胖与常喝碳酸饮料有关


(3)解:设常喝碳酸饮料的肥胖者男生为A、B、C、D,女生为E、F,则任取两人有 AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种.

其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF.共8种.

故抽出一男一女的概率是


【解析】(1)设常喝碳酸饮料肥胖的学生有x人, .即可将上面的列联表补充完整;(2)根据列联表所给的数据,代入求观测值的公式,把观测值同临界值进行比较,得到有99.5%的把握说看营养说明与性别有关.(3)利用列举法,求出基本事件的个数,即可求出正好抽到一男一女的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”.

(1)完成下面列联表,并判断是否有的把握认为“空间想象能力突出”与性别有关;

空间想象能力突出

空间想象能力正常

合计

男生

女生

合计

(2)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为,求随机变量的分布列和数学期望.

下面公式及临界值表仅供参考:

0.100

0.050

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数).

(1)函数的图象在点处的切线与函数的图象相切,求实数的值;

(2)若函数在定义域上存在单调减区间,求实数的取值范围;

(3)若 ,且,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以为极点, 轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,(

(1)写出直线经过的定点的直角坐标,并求曲线的普通方程;

(2)若,求直线的极坐标方程,以及直线与曲线的交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足an+1+(﹣1)nan=2n﹣1,则{an}的前60项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,求:

(Ⅰ)过点与原点距离为2的直线的方程;

(Ⅱ)过点与原点距离最大的直线的方程,最大距离是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:

(1)CD=BC;
(2)△BCD∽△GBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:向量 =(1,﹣3), =(﹣2,m),且 ⊥( ).
(1)求实数m的值;
(2)当k + 平行时,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在某港口处获悉,其正东方向距离20n mile的处有一艘渔船遇险等待营救,此时救援船在港口的南偏西30°距港口10n mile的C处,救援船接到救援命令立即从C处沿直线前往B处营救渔船.

(1)求接到救援命令时救援船距渔船的距离;

(2)试问救援船在C处应朝北偏东多少度的方向沿直线前往B处救援?(已知

查看答案和解析>>

同步练习册答案