精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow{m}$=(t+1,1),$\overrightarrow{n}$=(t+2,2),若$(\overrightarrow{m}+\overrightarrow{n})⊥(\overrightarrow{m}-\overrightarrow{n})$,则t=(  )
A.0B.-3C.3D.-1

分析 通过向量的垂直,数量积为0,求出t的值.

解答 解:向量$\overrightarrow{m}$=(t+1,1),$\overrightarrow{n}$=(t+2,2),
∴$\overrightarrow{m}$+$\overrightarrow{n}$=(2t+3,3),$\overrightarrow{m}$-$\overrightarrow{n}$=(-1,-1),
∵$(\overrightarrow{m}+\overrightarrow{n})⊥(\overrightarrow{m}-\overrightarrow{n})$,
∴-(2t+3)-3=0,
解得t=-3.
故选:B

点评 本题考查向量的数量积的应用,向量的垂直条件,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在△ABC中,D是BC的中点,向量$\overrightarrow{AB}$=a,向量$\overrightarrow{AC}$=b,则向量$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$).(用向量a,b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.计算:$|\begin{array}{l}{4}&{3}\\{2}&{1}\end{array}|$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对于函数f(x),若存在实数m,使得f(x+m)-f(m)为R上的奇函数,则称f(x)是位差值为m的“位差奇函数”.
(1)判断函数f(x)=2x+1和g(x)=2x是否为位差奇函数?说明理由;
(2)若f(x)=sin(x+φ)是位差值为$\frac{π}{4}$的位差奇函数,求φ的值;
(3)若f(x)=x3+bx2+cx对任意属于区间$[-\frac{1}{2},+∞)$中的m都不是位差奇函数,求实数b,c满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.抛物线y=ax2的准线方程是y=-1,则a的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示的多面体ABCDE中,已知ABCD是边长为2的正方形,平面ABCD⊥平面ABE,∠AEB=90°,AE=BE.
(Ⅰ)若M是DE的中点,试在AC上找一点N,使得MN∥平面ABE,并给出证明;
(Ⅱ)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,c=2$\sqrt{2}$,且C=$\frac{π}{4}$,则△ABC的面积为$\sqrt{3}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某同学证明不等式$\sqrt{7}$-1>$\sqrt{11}$-$\sqrt{5}$的过程如下:要证$\sqrt{7}$-1>$\sqrt{11}$-$\sqrt{5}$,只需证$\sqrt{7}$+$\sqrt{5}$>$\sqrt{11}$+1,即证7+2$\sqrt{7×5}$+5>11+2$\sqrt{11}$+1,即证$\sqrt{35}$>$\sqrt{11}$,即证35>11.因为35>11成立,所以原不等式成立.这位同学使用的证明方法是(  )
A.综合法B.分析法
C.综合法,分析法结合使用D.其他证法

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点A(2,m),B(1,2),C(3,1),若$\overrightarrow{AB}•\overrightarrow{CB}=|{\overrightarrow{AC}}|$,则实数m的值为$\frac{7}{3}$.

查看答案和解析>>

同步练习册答案