【题目】已知直线l过定点P(1,1),且倾斜角为 ,以坐标原点为极点,x轴的正半轴为极轴的坐标系中,曲线C的极坐标方程为 .
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)若直线l与曲线C相交于不同的两点A,B,求|AB|及|PA||PB|的值.
【答案】
(1)解:∵曲线C的极坐标方程为 ,
∴ρ2=2ρcosθ+3,
将ρ2=x2+y2,ρcosθ=x代入,得x2+y2=2x+3,即x2+y2﹣2x﹣3=0.
∵直线l过定点P(1,1),且倾斜角为 ,
则直线l的参数方程为 ,即 (t为参数)
(2)解:将直线l的参数方程代入x2+y2﹣2x﹣3=0,得 ,
设方程两根分别为t1,t2,则 ,
∴AB的长|AB|=|t1﹣t2|= = = ,
|PA||PB|=|t1t2|=3
【解析】(1)曲线C的极坐标方程转为ρ2=2ρcosθ+3,将ρ2=x2+y2 , ρcosθ=x代入,能求出曲线C的直角坐标方程;由直线l过定点P(1,1),且倾斜角为 ,能求出直线l的参数方程.(2)将直线l的参数方程代入x2+y2﹣2x﹣3=0,得 ,设方程两根分别为t1 , t2 , 利用韦达定理及弦长公式能求出|AB|及|PA||PB|的值.
科目:高中数学 来源: 题型:
【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本万元,每生产(百辆),需另投入成本万元,且.由市场调研知,每辆车售价万元,且全年内生产的车辆当年能全部销售完.
(1)求出2018年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额-成本)
(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了解老人们的健康状况,政府从 老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能 自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行 统计,样本分布被制作成如图表:
(1)若采取分层抽样的方法再从样本中的不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市80岁及以上长者占全市户籍人口的百分比;
(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发 放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下 老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100 元.试估计政府执行此计划的年度预算.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校有教师400人,对他们进行年龄状况和学历的调查,其结果如下:
学历 | 35岁以下 | 35-55岁 | 55岁及以上 |
本科 | 60 | 40 | |
硕士 | 80 | 40 |
(1)若随机抽取一人,年龄是35岁以下的概率为,求;
(2)在35-55岁年龄段的教师中,按学历状况用分层抽样的方法,抽取一个样本容量为5的样本,然后在这5名教师中任选2人,求两人中至多有1人的学历为本科的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=[x3+3x2+(a+6)x+6﹣a]e﹣x在区间(2,4)上存在极大值点,则实数a的取值范围是( )
A.(﹣∞,﹣32)
B.(﹣∞,﹣27)
C.(﹣32,﹣27)
D.(﹣32,﹣27]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为 .第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为 ,每次中奖均可获奖金400元.
(1)求某员工选择方案甲进行抽奖所获奖金 (元)的分布列;
(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com