精英家教网 > 高中数学 > 题目详情

已知9x-10·3x+9≤0,求函数y=x-1-4x+2的最大值和最小值

由9x-10·3x+9≤0得(3x-1)(3x-9)≤0,
解得1≤3x≤9.∴0≤x≤2.
x=t,则≤t≤1,y=4t2-4t+2=42+1.
当t=即x=1时,ymin=1;
当t=1即x=0时,ymax=2. 

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分) 已知函数的图象与函数的图象关于点A
(0,1)对称.(1)求函数的解析式(2)若=+,且在区间(0,
上的值不小于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数的奇函数,且单调递减,解关于的不等式,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(Ⅰ)当  时,求函数  的最小值;
(Ⅱ)当  时,讨论函数  的单调性;
(Ⅲ)求证:当 时,对任意的 ,且,有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(1)求函数g(x)的解析式;
(2)解不等式g(x)≥f(x)-|x-1|;
(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2+bx+c,(a<0)不等式f(x)>-2x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

温州某私营公司生产一种产品,根据历年的情况可知,生产该产品每天的固定成本为14000元,每生产一件该产品,成本增加210元.已知该产品的日销售量与产量之间的关系式为
,每件产品的售价与产量之间的关系式为

(Ⅰ)写出该公司的日销售利润与产量之间的关系式;
(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC的周长为,且
(1)求边AB的长;
(2)若△ABC的面积为,求角C的度数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)
已知函数的定义域是集合,函数的定义域为集合
(Ⅰ)求集合       
(Ⅱ)若,求实数的取值范围

查看答案和解析>>

同步练习册答案