【题目】若α∈[0,π],β∈[﹣ , ],λ∈R,且(α﹣ )3﹣cosα﹣2λ=0,4β3+sinβcosβ+λ=0,则cos( +β)的值为( )
A.0
B.
C.
D.
【答案】D
【解析】解:∵4β3+sinβcosβ+λ=0,∴(﹣2β)3﹣2sinβcosβ﹣2λ=0,即 (﹣2β)3+sin(﹣2β )﹣2λ=0.
再由(α﹣ )3﹣cosα﹣2λ=0,可得(α﹣ )3 +sin(α﹣ )﹣2λ=0.
故﹣2β和α﹣ 是方程 x3+sinx﹣2λ=0 的两个实数解.
再由α∈[0,π],β∈[﹣ , ],所以 ﹣α 和2β的范围都是[﹣ , ],
由于函数 x3+sinx 在[﹣ , ]上单调递增,故方程 x3+sinx﹣2λ=0在[﹣ , ]上只有一个解,
所以, ﹣α=2β,所以 +β= ,所以cos( +β)= .
故选:D.
【考点精析】解答此题的关键在于理解两角和与差的余弦公式的相关知识,掌握两角和与差的余弦公式:.
科目:高中数学 来源: 题型:
【题目】高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数与答题正确率﹪的关系,对某校高三某班学生进行了关注统计,得到如下数据:
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求关于的线性回归方程,并预测答题正确率是100﹪的强化训练次数;
(2)若用表示统计数据的“强化均值”(精确到整数),若“强化均值”的标准差在区间内,则强化训练有效,请问这个班的强化训练是否有效?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
=, =- ,
样本数据的标准差为:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=mx2﹣2x+1有且仅有一个为正实数的零点,则实数m的取值范围是( )
A.(﹣∞,1]
B.(﹣∞,0]∪{1}
C.(﹣∞,0)∪(0,1]
D.(﹣∞,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆C的参数方程为(θ为参数),直线l的参数方程为(t为参数).
(Ⅰ)写出椭圆C的普通方程和直线l的倾斜角;
(Ⅱ)若点P(1,2),设直线l与椭圆C相交于A,B两点,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,椭圆: 的离心率为,直线l:y=2上的点和椭圆上的点的距离的最小值为1.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 已知椭圆的上顶点为A,点B,C是上的不同于A的两点,且点B,C关于原点对称,直线AB,AC分别交直线l于点E,F.记直线与的斜率分别为, .
① 求证: 为定值;
② 求△CEF的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了制定合理的节电方案,供电局对居民用电进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照, , , , , , , , 分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中的值并估计居民月均用电量的中位数;
(Ⅱ)现从第8组和第9组的居民中任选取2户居民进行访问,则两组中各有一户被选中的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com