【题目】数列{an}的前n项和记为Sn , a1=t,an+1=2Sn+1(n∈N*).
(1)当t为何值时,数列{an}为等比数列?
(2)在(1)的条件下,若等差数列{bn}的前n项和Tn有最大值,且T3=15,又a1+b1 , a2+b2 , a3+b3成等比数列,求Tn .
【答案】
(1)解:由an+1=2Sn+1 ①可得an=2sn﹣1+1 (n≥2)②
两式作差得 an+1﹣an=2anan+1=3an.
因为数列{an}为等比数列a2=2s1+1=2a1+1=3a1a1=t=1.
所以数列{an}是首项为1,公比为3的等比数列
∴an=3n﹣1
(2)解:设等差数列{bn}的公差为d,
由T3=15b1+b2+b3=15b2=5,
所以可设b1=5﹣d,b3=5+d.
又a1=1,a2=3,a3=9.
由题得(5﹣d+1)(5+d+9)=(5+3)2.d=﹣10,d=2.
因为等差数列{bn}的前n项和Tn有最大值,且b2=5,所以d=﹣10.
解得b1=15,
所以Tn=15n+ =20n﹣5n2
【解析】(1)先由an+1=2Sn+1求出an+1=3an . 再利用数列{an}为等比数列,可得a2=3a1 . 就可以求出t值.(2)先利用T3=15求出b2=5,再利用公差把b1和b3表示出来.代入a1+b1 , a2+b2 , a3+b3成等比数列,求出公差即可求Tn .
科目:高中数学 来源: 题型:
【题目】已知数列{an}是等比数列,首项a1=1,公比q>0,其前n项和为Sn,且S1+a1,S3+a3,S2+a2成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足,Tn为数列{bn}的前n项和,若Tn≥m恒成立,求m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(﹣1,1)上的函数f(x)满足: ,当x∈(﹣1,0)时,有f(x)>0,且 .设 ,则实数m与﹣1的大小关系为( )
A.m<﹣1
B.m=﹣1
C.m>﹣1
D.不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga ,(a>0且a≠1).
(1)判断f(x)的奇偶性,并加以证明;
(2)是否存在实数m使得f(x+2)+f(m﹣x)为常数?若存在,求出m的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an}的前n项和为Sn , 对任意n∈N* , 点(an , Sn)都在函数 的图象上.
(1)求数列{an}的首项a1和通项公式an;
(2)若数列{bn}满足 ,求数列{bn}的前n项和Tn;
(3)已知数列{cn}满足 .若对任意n∈N* , 存在 ,使得c1+c2+…+cn≤f(x)﹣a成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com